
AL-TP-1992-0052

AD-A261 088

3 INTEGRATED DEVELOPMENT

r SUPPORT ENVIRONMENT
R (IDSE)

3 Richard J. Mayer

Martha S. Wells

KNOWLEDGE BASED SYSTEMS LABORATORY
DEPARTMENT OF INDUSTRIAL ENGINEERINGC•L TEXAS A&M UNIVERSITY

"s) COLLEGE STATION, TX 77843

B c -M; Michael K. Painter, Capt, USAF

R ()AM HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISIONT

D rNOVEMBER 1992

R
SINTERIM TECHNICAL PAPER FOR PERIOD JANUARY 1990 - MARCH 1991

Approved for public release; distribution is unlimited.

- 3 3s1 o02
AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573



NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

M rCHAEL K. PAINTER, Capt, USAF
Program Manager

BERTRAM W. CREAM, Chief
Logistics Research Division



I Form Approved

REPORT DOCUMENTATION PAGE OMB NoA ppr-Oved

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions. searchfing existing data sources.gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments reg~arding this burden estimate or any other aspect of this

ollection f information, including suggestions for reducing this burden, to Washington Headdquarters Services, Directorate tot- information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) -2. REPORT DATE 3. REPORT TYPE ANO DATES COVEREDNovember 1992 Interim - January 1990 to March 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Integrated Development Support Environment (IDSE) C - 'FQ7624-90-0001 0
PE - 63106F
PR - 2940

6. AUTHOR(S) TA- 01
Richard J. Mayer Michael K. Painter, Capt, USAF WL - 1 5
Martha S. Wells

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Knowledge Based Systems Laboratory,-` REPORT NUMBER

Department of Industrial Engineering
Texas A&M University
College Station, TX 77843

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING

Armstrong Laboratory AGENCY REPORT NUMBER

Human Resources Directorate AL-TP-1992-0052
Logistics Research Division
Wright-Patterson AFB, OH 45433-6573

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Michael K. Painter, AL/HRGA, (513) 255-7775

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

Businesses today are rapidly recognizing that information assets are a resource that belongs to, and
can be more effectively used by, the enterprise as a whole to realize major advancements in
competitiveness. Attempts to leverage and reuse these assets, however, have long been plagued by
the inability of our information systems to adapt and evolve gracefully to a changing environment.
The ability to leverage corporate information assets therefore necessitates an altogether new way of
thinking about, and developing, enterprise information systems. If information is to be controlled
and managed as a global enterprise resource, then enterprise information systems will require the
consistent, long-term involvement of large numbers of individuals, many of whom are not computer
specialists. An Integrated Development Support Environment (IDSE) provides a system which
supports user-driven dvlment and evolution of information systems through graceful change to
both (1) the information needs to be supported, and (2) the degree and types of automation. This
report describes the design concepts for an IDSE centering around a scalable architectural design
strategy enabling enterprise-level evaluation towards the desired levels of integration, automation,
and sophistication.

14. SUBJECT TERMS continuous process integrated information 15. NUMBER OF PAGES

architecture improvement systems 8 1
computer-aided information engineering integration 16. PRICE CODE

systems engineering information systems systems engineering
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORTI OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Pr-ScI:dP by ANSI MId 139-18
298.102



IDSE Concept of Operations

Table of Contents

List of Figures ........................................................................... v

Preface ......................................... .. ........................ vi
Sum m ary .................................................................................... vii
1.0 Introduction ......................................................................... 1

2.0 Executive Overview ............................................................... 1

2.1 Motivation ............................................................. 2

2.2 Requirements ............................................................ 3
2.3 Key IDSE Architectural Needs and Concepts ...................... 5

2.3.1 IDSE Architectural Levels .................................... 6

2.4 Example Scenario of IDSE Application ............................ 12

3.0 IDSE Concepts ................................................................... 16

3.1 Basic Philosophy, Strategy, and Approach ....................... 16

3.2 Architectural Description of the Four IDSE Levels ............... 17

3.2.1 Level 0 IDSE ................................................. 17

3.2.1.1 User Interaction Services .......... 20

3.2.1.2 Tool Sets and Data Integration ............ 20

3.2.1.3 Minimum Artifact Repository .............. 21

3.2.2 Level 1 IDSE ................................................. 24

3.2.2.1 Increased Functionality of

Level 0 Concepts in Level 1 ................ 26

3.2.2.2 Level 1 Integration Services

Concept ........................................ 27

3.2.3 Level 2 IDSE ................................................. 30

3.2.3.1 Object/Artifact Repository .................. 32

3.2.3.2 ISyCL Loader and Reader .................. 34

3.2.4 Level 3 IDSE ................................................. 35

4.0 IDSE Usage and Application Scenario ........................................... 38

5.0 Summary and Conclusions .................................................... 49

5.1 Integrated Set of Development and Management Tools ................. 50

5.2 Automated Support for Information Transfer ..................... 50

5.3 Management of the System Development Process ................ 53

5.4 Management of Information System Design Artifacts ............ 54

5.5 IDSE Internal Evolution Capabilities ............................... 55

!11



IDSE Concept of Operations

Bibliography ................................................................................ 57

iv



IDSE Concept of Operations

List of Figures

Figure 1 IDSE Architecture ...................................................... 7

Figure 2 IDSE Architectural Levels ............................................. 9

Figure 3 IDSE Functionalities by Level ........................................ 18

Figure 4 IDSE Level 0 Architecture ........................................... 19

Figure 5 IDSE Level 1 Architecture ........................................... 25

Figure 6 Integration Services Manager ........................................ 28

Figure 7 Level 2 IDSE Architecture ........................................... 31

Figure 8 Level 3 IDSE-Life Cycle Artifact Object Repository .............. 36

Figure 9 Level 3 Information Transfer and Interpretation ................... 37

Figure 10 Login Display for the IDSE ........................................... 39

Figure 11 IDSE Options Available to a Modeler .............................. 40

Figure 12 IDEF3 Process Model for a Modeler Using a

Level 0 IDSE .............................................................. 42

Figure 13 Check-In Procedure for IDSE Level 0 ............................. 43

Figure 14 File Check-In Form ................................................... 44

Figure 15 Level 0 Librarian Check-In Process ................................ 45

Figure 16 Requesting Data in a Level 0 IDSE .................................. 46

Figure 17 Check-Out Process ................................................... 47

Figure 18 Browsing the Artifacts ............................................... 48
Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 0

r'riz ,• . -.L-.i- IIIBPECTD I Justification ...-_.-.-

By-

Distribution I

Availability Codes

' Avail and I or
Dist Special

v



IDSE Concept of Operations

Preface

This paper describes the research accomplished at the Knowledge Based Systems

Laboratory of the Department of Industrial Engineering at Texas A&M University.

Funding for the Laboratory's research in Integrated Information System Development

Methods and Tools has been provided by the Logistics Research Division of the Armstrong

Laboratory (AL/HRG), Wright-Patterson Air Force Base, Ohio 45433, under the technical

direction of USAF Captain Michael K. Painter, under subcontract with the NASA Research

Institute for Computing and Information Systems (RICIS) Program at the University of

Houston. The authors wish to acknowledge and extend a special thanks to the Integrated

Development Support Environment (IDSE) design team whose names are listed below:

Keith A. Ackley

Thomas M. Blinn

Mark A. Brunsell

Louis P. Decker

Arthur A. Keen

Richard J. Mayer

Michael K. Painter, Captain, USAF

Martha S. Wells

vi



IDSE Concept of Operations

Summary

This report describes the basic functionality, architecture, and operational concepts of an

Integrated Development Support Environment (IDSE). The requirement exists for a means

of developing and maintaining information systems that allow the organization to control
the system development life cycle. The primary focus of the IDSE research is to provide a
system development environment that supports development and evolution of all artifacts of
the information system life cycle from conception through retirement including component

reusability, development process description, design artifact management and tracking, and
user requirements. The IDSE will provide an environment for intelligent assistance in the
design, development, and evolution of an enterprise information system through support

for the following functions:

1) data transfer between tools and methods,

2) storage and retrieval of the system life-cycle data, information, and knowledge

at both the object and artifact level,

3) communication between users of the system, and

4) version control and configuration management for the system life-cycle

information.

The IDSE concept is structured around the idea of support sophistication levels. Each level
represents a complete and viable development support environment, not a version of some

other environment. Level 0 represents what we believe is a reasonable environment that
would require little or no additional computer resources investment from of the

implementing organization. Advancing from Level 0 to Level 3 will, with each step,
provide increased integration support, increased automation for the system development

process, increased tool sophistication, and correspondingly, will require increased financial

and computer resources.

vii



IDSE Concept of Operations

1.0 Introduction

The Integrated Development Support Environment (IDSE) research was conducted as part

of the Air Force Integrated Information Systems Evolution Environment (IISEE) program,

which is focused on developing technology like theories, formalizations, frameworks,
methods, automated tools, and environments for enabling or improving the process of

planning, definition, development, and maintenance of evolutionary, integrated information

systems. An IDSE is a system development environment consisting of:

1. system development tools,

2. a repository (storage area) of system development artifacts, and

3. integration services that provide automated support for system development
efforts.

Other objectives of the IDSE research are to provide better support and tracking of
information system evolution, better coordination between interdependent analysis and

design activities, and up-front consideration of all life-cycle factors associated with a
product. In other words, IDSE will be an automated environment that will support the

functions and methods required for the definition, design, development, and maintenance

of an evolving integrated information system. To control and manage this environment,

procedures must be provided to control and manage the large amounts of data generated by

the utilization of IDSE.

2.0 Executive Overview

2.1 Motivation

If the United States is to regain its leadership role in the world marketplace, industry needs
a means of managing and controlling its information systems. Most organizations
recognize this and acknowledge that information is second only to people in importance.

However, development of a comprehensive information system that can control and

manage the needs of an organization or even a product development effort is a complex

process. Although information systems may vary greatly, many common characteristics

are shared by all, including the following.

1. Many people are involved with the development of an information system, a

significant number of whom are not computer specialists.

-1aanama waw~ a mI I



IDSE Concept of Operations

2. The life cycles of information systems often extend beyond the working life of

the original designers.

3. There are vast amounts of poorly maintained documentation.

4. The most costly phase in the life cycle is system maintenance.

5. The few automated tools that do exist address different phases of the life cycle

and do not provide complete coverage or integrated support for the entire

process. In the system development process, there are only "islands" of

automated assistance; the data created in one phase must often be re-created if it

is to be used in later phases.

6. The lessons learned and components created in one project are seldom carried

over to others.

7. The existing project management tools do not address the problems of task

assignment and accountability with any degree of completeness.

8. The systems produced often do not satisfy the customer's requirements.

9. No one person can understand all the details of a system because the size of the

code in even one now involves hundreds of thousands of lines.

The requirement exists for a means of developing and maintaining information systems that

allow the organization to control the system development life cycle. Furthermore, since the

amount of information that the organization maintains is so large, the development of

information systems is no longer a job performed by a few individuals. Developing an

information system requires the coordinated effort of a large number of individuals, many

of whom are not trained system development experts. A system development effort

requires input from business managers, potential users, and customers as well as system

designers, programmers, and technicians. What is needed is an information system

development environment that provides the following.

1. A means to capture, represent, present, manipulate, and integrate information

about the system definition and design, as well as the design of the process

used to produce it and the modification history of the resulting artifact.

2. An integrated set of tools to be used by the individuals involved in the

development process. The integration supported by these tools should enable a

process of evolvable, tailorable, and universally automated tool integration. In

the environment, integrating and accessing automated tools should be

2



IDSE Concept of Operations

accomplished without extensive work. These tools must address all phases of

the system life cycle.

3. A means for controlled sharing and tracking of design information. This will

require design databases that allow the linking of design information and the

interlinking of design information to requirements information.

4. A means for tracking design dependencies and change, as well as propagating

their effects. The data storage facilities must provide for the linking of system

needs and requirements to designs and design decisions.

5. A means for monitoring and controlling the development process.

The primary focus of the IDSE research is to provide a system development environment

that supports development and evolution of all artifacts of the information system life cycle

from conception through retirement, including component reusability, development process

description, design artifact management and tracking, and user requirements.

2.2 Requirements

If an IDSE is to enable development, management, and evolution of information systems, it

must provide the following basic functionality.

1. An integrated set of system development and management tools. There

are currently many non-integrated tools that address different aspects of the system

development process.1 Most of them adequately address the area of the system

development process for which they were designed; however, they have been developed by

different vendors and for the most part have different data and hardware requirements. An

IDSE must provide a means whereby these tools can function together. Since the IDSE

will be an evolving information system itself, it must provide the means whereby new tools

and new versions of old tools can easily be incorporated into the environment without

interfering with the execution of existing tools.

2. Automated support for information transfer between tools. This

functionality must be provided by the IDSE because the tools will have different hardware

1 There are many areas of the system development process that as yet have no automated support.
Furthermore, in the area of project management and administration, the available tools are spectacularly
inadequate.

3



IDSE Concept of Operations

and software requirements. Furthermore, different tools will be addressing different

aspects of the development of the same system, and the data produced by one will likely

provide valuable input to another. Automated support for information transfer will shorten

system development time.

3. Management and control of the system development process. For

large, complex systems, the development process is equally complex. Generally, a great

number of individuals, tools, and data are involved. An IDSE must provide a means for

improved coordination between the various interdependent design activities, better support

and tracking of system evolution, and maintenance considerations for all life-cycle artifacts

associated with the development process. The implications of this requirement are that
there must be (1) site-definable process definition (i.e., each site defines its own

development process), (2) configuration management and version control for the target
system, and (3) change control and notification mechanisms.

4. Management of information system design artifacts. IDSE primary

functions are to improve system quality, reduce system development life-cycle cost, and

shorten system development lead-times. Large, complex projects produce vast amounts of

data. An IDSE must provide the means to describe and control it while providing for the

creation and manipulation of data, access control for global data, management of system

versions and configurations (software and hardware), and the management of ret ository

backups and restores. The IDSE system must deal equally well with design, project

management, and control data in a manner transparent to a user.

5. IDSE administration. An IDSE is expected to be an evolving information

system. As such, it must provide for its own development, management, and evolution.

This means that an IDSE must provide utilities that enable the storage, management,

access, and manipulation of data dictionaries, user profiles, tool and workstation

descriptions, control rules, and descriptions of other IDSE components and networks.

By meeting these requirements, IDSE will provide the automated environment needed to

support the application of design procedures and methods for the creation and maintenance

of an evolving system description. Most importantly, it will provide the capability to

manage the repository for the evolving system description at both elemental object and

artifact levels.

4



IDSE Concept of Operations

2.3 Key IDSE Architectural Needs and Concepts

An IDSE must, by definition, be an integrated information system. The phrase "integrated

information system" is used to refer to the information base and associated schemas which

collectively model the Universe of Discourse 2 associated with an enterprise. An evolving

information system is designed to allow for change over time and has mechanisms to

facilitate those changes. Furthermore, an integrated information system must evolve from

(and accommodate) existing traditional information systems. The IDSE will share

components with the enterprise information system (EIS) it is supporting. For example,

part of an EIS would be the integration mechanism that would allow the system changes to

be integrated into the evolving system. A scaled version of this integration mechanism

must also be a part of an IDSE, enabling the incorporation of new tools and allowing

system development automation technology to be added seamlessly into an existing

installation. In other words, the IDSE is an information system itself and will require

utilities similar to the enterprise information systems it is being used to construct.

The integration mechanism within both the EIS and the IDSE must ensure that all users

who request logically equivalent data get the same data even if it is referred to by different

names. Moreover, the integration mechanism should ensure that modifications to a piece of

information in the system always follow the same process and conform to all predefined

organizational constraints on information creation and modification. An example of such a

constraint might be, "No employee may be his own supervisor." This constraint affects not

only employee assignment, creation, and modification but project supervisor creation and

modification as well. The integration mechanism must provide the means to enforce 3 this

constraint and others defined on the information system.

Future information systems are expected to have different hardware and software operating

the system. However, future design changes in the internal storage of these integrated

2 A selected portion (the enterprise) of the real world. For instance, a university, the degrees granted by it,
and all instances of those degrees would represent a universe of discourse. An integrated information system

contains a representation of the universe of discourse. A description of the universe of discourse can be
called the enterprise description. (ISO/TR 9007, Information Processing Systems - Concepts and
Terminology for the Conceptual Schema and the Information Base, 1987.)

3 "Enforce"is most likely too strong a term to use in many cases. The information system might allow
certain modifications but issue a notification of a business rule violation,

5



IDSE Concept of Operations

systems should not affect how the user works with it. In other words, the evolving
information system environment must also be an integrated environment.

2.3.1 IDSE Architectural Levels

An IDSE must provide a platform for the delivery of intelligent tools in addition to the
management and control of the enterprise information system education. To provide an
environment for intelligent assistance in the design, development, and evolution of an
enterprise information system, the IDSE must support the following:

1. data transfer between tools and methods,

2. storage and retrieval of the system life-cycle data, information, and knowledge
at both the object and artifact level,

3. communication between system users, and

4. version control and configuration management for the system life-cycle
information.

It must also provide a scalable, integrated environment that allows integration, data transfer
services, and tailoring of implementation site control over the development process.

As conceptualized in Figure 1, an IDSE will consist of:

"* Local Machine Interfaces,

"* Session Management and Communication Services,

"* Integration Services,

"• Artifact Repository Schemas and Storage Facilities,

"* Artifact Repository Management Utilities, and

"* System Development and IDSE Maintenance Tool Sets.

Each computer within an IDSE implementation will have its own local interface to the
system. Through this local interface, the user will connect to IDSE via a session manager,
which will set up the user's work environment based upon his or her profile and the usage
scenario for that session. The user profiles and usage scenarios are maintained by the
System Definition Data. The session manager will have access to them via the repository
management utilities. Because the object and artifact repositories are likely not to be
completely stored on a single machine, the IDSE will provide networking capabilities by
which remote users (programs and individuals) can communicate with these repositories

and other users. The IDSE will support data and function integration through an

6



IDSE Concept of Operations

integration services concept that requires minimal modifications to existing applications.
This approach, described in detail in Section 3, IDSE Concepts, offers the potential to

avoid many of the legacy system assimilation problems normally associated with the
traditional International Organization for Standardization conceptual schema approach to

integration.

Local Machine Interface

Session Management & Communication Services

Integration Artifact
Services Repository System

Management Development
Utilities &

IDSE
Maintenance

Artifact Repository Schemas Tool Sets
and

Storage Facilities

Figure 1. IDSE Architecture

The life-cycle object/artifact repository provides for the storage and maintenance of the

data, information, and knowledge associated with a system development effort. The

complexity of the repository management utilities provided by the IDSE will be capable of
tailoring to the support level required of the IDSE at a site. For a minimum IDSE, artifact

repository management will be supported. To allow intelligent application of the
integration services, repository management will be extended to include configuration

control information and data evolution rules. Finally, to provide design rationale capture

support and automated model interpretation and translation, support for object-level
manipulation must be provided. In other words, objects (such as model elements), in

addition to files, must be able to be manipulated. In general, the repository management

utilities include those that allow users to obtain data from the repository and to insert

objects/artifacts into it. Furthermore, the management facilities will provide for (1) data

security by having encryption and decryption utilities, (2) version management and change

7



IDSE Concept of Operations

control for design and other life-cycle data, (3) message management utilities, and (4)
various other utilities required by any database management system.

An lDSE would not be complete without a set of automated system development support
tools, not necessarily built by the developers of the LDSE. In general, these will be
commercial, off-the-shelf (COTS) tools that provide automated support for some phase of a
system development effort, from problem identification and design to system maintenance.
This set of tools includes those for the development and maintenance of the IDSE itself.

Integration is not obtained without cost. The IDSE philosophy is that integration should be
demand-driven, meaning that integration services would be provided only when there are
sufficient needs and resources to accomplish integration. A design goal of the lDSE is to
provide an architecture that can be scaled to facilitate the desired level of integration. The
resources required to achieve an integration level must be justified by the value of the
increased capabilities of personnel provided by it. In other words, the IDSE philosophy is
to treat integration as a resource.

To provide for tailorability, we have developed a "level" concept for the packaging of the
IDSE functionality. This concept defines four levels of IDSE technology (see Figure 2)
which are not IDSE versions. Each higher level of the IDSE will have all of the
functionality of the lower levels as well as additional integration capabilities. When
developed, each level will be a fully functional system and may, in the course of its
lifetime, exist in different versions.

The components featured at each lDSE level are illustrated in Figure 2, which also shows a
comparison of the functionality provided at each level. The level at which an organization
would implement depends on the following factors:

1) current computer resources,
2) size of the enterprise,

3) extent of the system development needs, and
4) implementation budget.

The Level 0 IDSE would offer the implementing organization the least expensive level of

IDSE support. Moreover, it would require the smallest investment in both computer and
networking resources. In fact, the goal is for a Level 0 implementation to be implemented
with the current computer resources of the organization. For a small organization with
limited system development needs, Level 0 could be the highest level ever implemented.

8



IDSE Concept of Operations

Information System Constraint
Language (ISyCL) Interprew*Trojectors

Level 2
ISYCL

Rc r
Level I

Integration Network
Services Manager (ISM) Transaction Manager

Plan Level 0
Builder Session

Local Manager Artifact

Machine Relmitory
Interface 4f Communication % % Manager

A Services ýk

System Development & IDSE Life-Cycle Artifact

Maintenance Tool Sets Manager (LCAM),
Including Automated

Repository Database Check-Out &

& Schemas 
Browsing

Message Encryption/Decryption
Dispatcher/Interpreters Utilities

Version Management (VM) Conceptual Scheina
& Change Control Processor

------------
Repository File Data Confersion &

Space Translation Utilities &
Libraries

Auto ISM Maintenance
Check-In Tools

Object
Repository

Domain Method.
Ontologies Ontologies;

Figure 2. IDSE Architectural Levels

9



IDSE Concept of Operations

In a Level 0 implementation, the IDSE would support an expandable set of COTS

Computer-Aided Systems Engineering (CASE) and computer-aided software engineering

(case) tools with outputs integrated via data converters and translation utilities.

Implemented as a multi-schema architecture, it would support a minimal artifact repository

(see Section 3.4). Associated with this level would be browsing capabilities and automated

check-out functionality which would allow artifact use to be monitored and managed. At
this level, the integration approach may be called the "automation support for manual

control" because enforcement of check-in policies and constraints would rely heavily upon

a human librarian to enforce the system development policies. Furthermore, the users
would be much more actively involved in the data access and translation process.

A larger organization having a bigger budget and greater system development needs would
want to implement one of the more advanced levels of IDSE. However, even with a larger

organization, implementation of a Level 0 IDSE prior to one of the more advanced levels
would make the transition to an integrated development environment less of a "future

shock" to the affected system designers.

With each level, the extent of automated support for integration and control of the

development process increases. A Level 1 implementation focuses primarily on automated

support and coherence of data, function, and process integration. One of the primary

capabilities provided by a Level 1 implementation is automated support for the check-in

process, including automatic notification.4 Enhanced networking capabilities will be
required of the computing platform for a Level 1 implementation, which still provides all

the manually exercised integration functionality of Level 0. However, integration will be

enhanced with the inclusion of a component called the Integration Services Manager (ISM),

which will allow the establishment of a Client/Server relationship between two tools and

thereby provide for both data and function integration. The ISM will have access to a

service list (advertised services) provided by the IDSE tools. When a user/tool (client)
requires data created with another tool, an integration service request would be passed to

the ISM. If this service is one of a list of services known to the ISM, then it would invoke

the process(es) needed to provide the requested data. This process may be complicated by

such issues as having to invoke remotely one or more tools to execute the request. If it is

satisfied, the data would be transferred back to the client for use.

4 Data check-in requires more advanced networking capabilities and more intelligence on the pat of the
processor performing the task. The activities associated with check-in are difficult and expensive to perform
automatically.

10



IDSE Concept of Operations

IDSE Level 2 implementation focuses on application-independent management of the life-

cycle data. Integration will be enhanced at Level 2 with the inclusion of a Neutral

Information Representation Scheme (NIRS) that enables information from models in

various methods to be represented in a neutral format. With the inclusion of the NIRS, the

IDSE can maintain and manage an Evolving System Description (ESD) at an object rather

than an artifact level. It is expected that the NIRS would be implemented using the

Information Systems Constraint Language (ISyCL). More information about ISyCL is in

the ISyCL Technical Report [Decker 921. At Level 2, the minimal artifact repository would

be replaced with an Object Repository. A repository at this level would store the actual

objects created in the system development process rather than just pointers to where

artifacts containing those objects are stored. For example, specific requirement statements

rather than a version of the requirements document would be managed. Each IDSE "Level

2 friendly" tool would have an ISyCL extractor that would convert models into an ISyCL-

formatted NIRS representation. The ISM would have an additional utility (called an ISyCL

Loader) which would place data that is in ISyCL format into the object reposi:*4,'y. An

ISyCL Reader will be provided to translate client-requested information from the object

repository. To support the Loader and Reader, tool vendors must provide utilities that can

translate the data their tools create into ISyCL code and interpret ISyCL data files.

Level 3 IDSE implementations would provide the highest integration level (semantic

interpretation of model-acquired data). The object repository in Level 3 would provide a

facility for interpreting the meaning of the various model element instances (and complete

models) submitted to the Object repository. This functionality will be provided via the use

of method and domain ontologies, which are knowledge bases containing the meta-level

descriptions of objects, relationships, and constraints pertaining to a particular domain.

For each domain or method of interest, there must be a separate ontology. In Level 3, a

method ontology would be used in conjunction with a domain ontology to guide

information transfer from a model into the object repository through the use of the ISyCL

interpreter for that method and particular domain ontology. The ontologies (domain and

method) could then be used (with an ISyCL projector) to take information found in the

object repository and generate a partial model in a different method. With these additions,

the site implementing a Level 3 IDSE will support automatic model translation, provide data

consistency across the entire system development process, and maintain traceability links

between data artifacts.

11



IDSE Concept of Operations

2.4 Example Scenario of IDSE Application

Just like any information system, the IDSE will be an evolving system. It is expected that

IDSE technology application would be implemented at a site in at least four stages

(corresponding to the implementation of the four levels described above). The four levels

do not represent versions; rather, each is a fully functional production system. With each

stage in the assimilation process, the introduction of a new level would provide an

organization with increased automated assistance in their system definition, development,

or maintenance activities. The following scenario provides a concept of how an imaginary

chemical company called Forefront Chemical, Inc., would likely implement this IDSE

technology.

Consider a typical situation for the employees of the Forefront Chemical, Inc., Information

and Systems Group. As one of the largest U.S. chemical firms, Forefront is a forerunner

in not only chemical technology but also in information systems technology. Where other

companies are buckling under the weight of their information systems, Forefront is actually

decreasing query times and most importantly, decreasing costs. What put Forefront ahead

of its competitors? It has successfully leveraged technology developed under the U.S. Air

Force IISEE project.

Of course, there was a great deal of grumbling at first. Information systems are terrible

beasts to manage. When the keepers of the beasts heard of plans to implement an entirely

new system for evolution of the enterprise information systems, the obvious questions

were raised. What is wrong with the current system? How can we afford to mess around

with such an integral part of our business? Where are we going to find the resources to

accomplish such a project?

Luckily, corporate management had already seen the proverbial handwriting on the wall.

They knew that information was their second most critical resource behind its people.

They also knew that the quantity of information to be handled was increasing far too

rapidly for their current systems to evolve without major overhauls. Intense world market

competition was forcing quicker responses to market demands and causing profit margins

to decrease while manpower and raw material costs kept increasing. The current systems

were founded on the following outdated principles: computing costs were expensive;

computer systems were centralized; storage was limited; and the company had the resources

to develop custom applications.

12



IDSE Concept of Operations

No one can argue that information systems must be handled gently. Cut off the

information flow and the company stops dead in its tracks. The Technology Planning

Group had assured management that the new IDSE could be brought on-line independent

of the EIISs, incrementally improving portions of the systems as needed. A thorough

security plan had been developed to protect the information systems from corruption.

Once the decision had been made to implement IDSE, the grumbling stopped since no one

had time to worry about it. The Forefront developers took the specification provided by the

researchers and broke into teams. One concentrated on IDSE implementation strategies,

and the other took on the task of training the company engineers and management in

function modeling (IDEFO) and process description capture (IDEF3). A third team set out

to bring current information models up to date and construct new enterprise models. Yet

another team worked with corporate management to determine policies regarding project

planning. For instance, no project received funding without a complete activity model.

There were still other teams that interfaced with industry standards organizations and

consortiums.

Then the changes began to appear. As one walked past a conference room, the presenter

would usually be referring to an IDEFO or IDEF3 model of some task. Portable computers

had become so inexpensive and powerful that conference tables included network

connections to the corporation model databases. At lunch, discussions of how particular

constraints had been identified could be heard. Even weekly progress reports had become

more organized since project members could refer to their tasks in the project framework.

The IDSE was yet to be completed, though. The models were still not integrated. Human

librarians still checked models in and out and oversaw the evolution of system artifacts.

Users needed to be notified of what services were available since the automated services

manager was still under development. Tools were not integrated because they were still

being enhanced to support remote invocation and cooperation with the IDSE Artifact

Manager. Common information between models still had to be transferred and maintained

by hand. The advent of Dynamic Data Exchange (DDE) on Personal Computers (PCs) and

"Hot Links" on Macintosh computers had shown people what they could expect from their

modeling tools. Consequently, there was some grumbling when models had to be

modified independently. Still, all in all, the system was gaining speed, and corporate

management began to see dividends from their investment.

A while later, the IDSE Implementation Group brought on-line what they called the "Level

One" implementation of the IDSE. It was revolutionary. People no longer needed to be

experts to get around the system. The International Organization for Standardization (ISO)

13



IDSE Concept of Operations

provided transparent access to models no matter where they were. Check-in and check-out

of models was handled automatically. No one had to wait for a reply from the system

librarian in order to obtain artifacts. Either they were available, or the name and mailbox of

the present holder were returned. Of course, the corporation voice mail system became

more widely used because people no longer had to use "SneakerNet" to hunt down models.

The Integration Services Planner (ISP) was now working in the background, automatically

generating plans when services were requested. Users no longer needed to remember the

chain of steps required either to translate data from one format to another or to extract

useful parts of a model for use in another. For instance, if an individual wanted the list of

concepts from an IDEFO model for use in an IDEF1 model, all the user needed to supply

was the name of the model. The ISP determined the steps necessary to obtain the IDEFO

model, invoke the tool to extract the concepts (the IDEF0 tool had this capability), move the

concept list to the user's directory, and invoke the IDEF1 tool to read the concept list and

allow the user to specify how to incorporate the concepts into the IDEF1 model. System

gurus still liked to show that they knew how to do it on their own, but management

frowned upon those who made manual errors.

The model integration became automated, and the ISM now allowed various forms of it.

The simplest form was called "Get and Forget." In other words, a portion of one model

was copied to another, but the connection was lost. Thus, if changes were made to one,

they would not be reflected in the other. ISO also provided "Get and Remember." In this

case, the links were remembered, and changes in one model were reflected in the other.

Certain tools that had not, been modified to exist within the IDSE could not provide this

capability. They were either enhanced by their vendors or left by the wayside.

The response to the move to Level One caught the IDSE Implementation Group by

surprise. They were not prepared for the demands users placed on the system. Since

people now depended on the ISM to perform tasks unaided, they spent more of their time

on modeling and work and less on learning how to use the system. People became spoiled

quickly. If the system failed to do something the user felt possible, a service request was

filed immediately (voice mail, of course). The IDSE Implementation Group was forced to

reduce its efforts on advancing the state of the IDSE and concentrate on supplying the

services the users identified as essential to their effective completion of tasks. Eventually,

the requests leveled off and new technology levels were addressed.

What more could one ask? The enterprise information systems were already radically

improved over the former implementations. Still, there were a lot of people who spent time

trying to incorporate the new models into information systems implementations. Since the

14



IDSE Concept of Operations

tools for modeling allowed the users to model so much more quickly, the workload on the

information system implementors went through the roof. There needed to be a better

method for incorporating model changes into the Evolving System Description (the

collection of models used to implement the enterprise information systems).

The IDSE Implementation Group was already hard at work on this problem with standards

organizations and tool vendors to iron out the standard for the ISyCL that would act as the

Neutral Information Representation structure of the IDSE. Once the standard was defined,

tool vendors incorporated ISyCL code generation and parsing into their tools.

Furthermore, researchers had for some time been looking into expert systems for

translating between models in different methods. ISyCL allowed many of the concepts

discovered in the research to be implemented in the IDSE.

Parallel with this effort, a group was formed to define ontologies (using IDEF5) for

various enterprise parts so that models with common elements could be identified

automatically. This effort was very difficult since a company the size of Forefront has so

many people with different backgrounds and word usages. As many conflicts as possible

were resolved, and overall interdepartmental communication was improved greatly.

Just recently, Level Two went on-line. It did not have nearly the impact on users as Level
One, but the corporation is seeing drastic improvements in its information quality. No

longer are there discrepancies between overlapping models; confusing terminology has

been reduced and the information systems implementations are more stable now that ISyCL

descriptions are used to generate the actual database representations. No longer is there

fear that the information systems will not be able to keep up. It is common to fear the

unknown, but now that the IDSE provides such a clear view of the information structure,

fears can be assuaged quickly.

There are still advances to be made. It is rumored that soon it will be possible to use tools

as information system views since expert systems will be available to translate between

models in different methods. Thus, the system will identify which concepts in an IDEFO

model are also represented as entity classes in an IDEFI model, and so forth.

Though future advances are always appreciated, most people are just happy to perform

their jobs more effectively. Forefront Chemicals, Inc., is effectively competing in a tough

world market.

It is expected that most organizations would assimilate the IDSE technology in a manner

similar to that depicted in this scenario. Even if it were currently available, few

organizations are likely to introduce IDSE technology with a Level 2 or 3 implementation

15



IDSE Concept of Operations

because cost-effective application at these levels requires cultural changes (just as the

implementation of a Manufacturing Resource Planning (MRP) system requires in a
manufacturing environment). We anticipate that IDSE assimilation will start at Level 0 or

Level 1 because of the lower implementation cost and the transfer of an automated

development environment that is palatable to the users. Furthermore, many smaller

organizations will very likely not require the more advanced functionality. In the remainder

of this report, we will examine the various IDSE concepts in greater detail.

3.0 IDSE Concepts

3.1 Basic Philosophy, Strategy, and Approach

The primary IDSE goal is to provide automated support for information system developers

which can be applied in any industry. Normally, information system development is

considered a task performed by data processing and computer specialists, but this is no
longer true. Enterprises are rapidly recognizing that the information they maintain is a

resource belonging to the enterprise as a whole. As such, it is not the domain of, nor

should it be controlled by, any particular department. If the information is to be controlled

and managed as a global enterprise resource, then the development and evolution of the

enterprise information systems will require many individuals who are not computer
specialists. Thus, the IDSE must support multidisciplined development teams with varying

degrees of computer skills.

To support these multidisciplined system development teams, an IDSE must provide an

environment containing a larger number of automated tools that address issues from data

collection and analysis to system maintenance. It must also support the automated transfer

of information developed by one group of individuals to a form usable by other individuals

working on other phases of the development.

This section will address those IDSE concepts of particular importance in satisfying the five

basic requirements first listed in Section 2.2. These requirements include the following:

1. an integrated set of system development and management tools,

2. automated support for information transfer between tools,

3. management and control of the system development process,

4. management of information system design artifacts, and

16



IDSE Concept of Operations

5. IDSE administration.

These requirements can be addressed by an environment that provides at least a minimal

Life-Cycle Artifact Repository (LCAR), which is a facility that provides for the insertion,

storage, management, and linkage of the life-cycle artifacts (data items) developed or used

in a project. It will include not only the database(s) that hold the artifacts, but also the

computer programs and utilities necessary to provide this functionality. Such an LCAR

capability is central to each IDSE level. The sophisticated functionality of Level 2 and

Level 3 requires the augmentation of the LCAR with an object-level manager. This

combination will be called the Life-Cycle Object Repository (LCOR) and will provide the

needed storage and management utilities necessary for implementing control at the atomic-

object level (rather than the document level) for the massive amounts of information

generated in a system development effort.

We will begin our discussion of IDSE concepts with a presentation of the conceptual

architectures of each of the four IDSE levels, followed by discussions of the integration

concepts to be implemented in the IDSE. These concepts include 1) the IDSE

implementation of complex objects, 2) the interrelated notions of version management,

configuration management, and change control, 3) model development support, and 4) the

provision for user views and roles. Finally, we will cover tool requirements and a system

development framework. Throughout these discussions, we wish to emphasize that many

of these concepts will be implemented through the functionality provided in the LCAR or

LCOR.

3.2 Architectural Description of tl:! Four IDSE Levels

This section will explain the architectures of the four IDSE levels. Each one provides

increased integration support and automation for the system development process. The
different degrees of integration functionality provided at each level of the IDSE are shown
in Figure 3.

3.2.1 Level 0 IDSE

The architecture of an IDSE5 Level 0 implementation addresses each IDSE requirement, but
in many aspects it does so by following a stringent set of site-specific manual procedures.

5 It is not expected that any basic characteristics of Level 0 will change, even in later versions

17



IDSE Concept of Operations

For this reason, we say that it provides primarily a manual approach to integration.

Another way of looking at Level 0 is that it requires the minimum investment in computer

and financial resources by the enterprise in which the technology is implemented.

Level 0 Level I Level 2 Level 3

1. Device-Independent All features of a All features and All features and
User Interface. Level 0 IDSE but functionality of Levels functionality of Levels

with increased 0 and 1. New/ 0, 1, and 2. New/
2. Session functionality (i.e., improved features in improved features in
Management more automated). Level 2 are: Level 2 are:
Facilities. New features found in

a Level 1 IDSE are: 1. Object Repository 1. Domain Ontology
3. Communication is included, pro. iding Knowledge Bases.
Services. 1. Integration Services facilities for storing an

Manager. ESD. 2. Method Ontology
4. System Knowledge Bases.
Development & IDSE 2. Integration Services 2. Provision for a
MaintenanceTool Sets. Plan Builder. Neutral Information 3. ISyCL Interpeter for

Representation translating ISyCL
5. Artifact Repository 3. Plan Executor. Scheme (NIRS) via representations of
Manager. the inclusion of system models into the

4. Integration Services ISyCL. the ESD using the
6. LCA Manager, maintenance tools method and domain-
including automated included in the IDSE 3. ISyCL Loader for specific ontology
check-out & browsing. set of maintenance inclusion of ISyCL knowledge bases.

tools. representation in the
7. Repository Database ESD. 4. ISyCL Projector for
& Schemas. 5. Network translating ISyCI.

Transaction Manager. 4. ISyCL Reader for representations in the
8. Message Dispatcher/ the automatic ESD into partial or
Interpreters. 6. LCA Manager will translation of complete models using

have automated information in the ESD the method and domain-
9. Encryption/ check-in because of into a particular specific ontology
Decryption Utilities. the increased network method. knowledge bases.

capability.
10. Version 5. Increases in
Management & automation provided in
Change Control. the area of

11. Conceptual Version/Configuration
Schema Processor. Management & Change

Control.

12. Repository File
Space.

13. Data Conversion,
Translation Utilities &
Libraries.

Figure 3. IDSE Functionalities by Level

18



IDSE Concept of Operations

Specifically, the architecture of Level 0 meets the IDSE requirements with the features

presented Figure 4.

Local Machine TOOL SETS
IDSE Interface •CASE and

case Tools

Session Manager Converter Utilities

Communication Translation
Services Utility Library

Life-Cycle Artifact Manager

Artifact Repository Manager

Message Dispatcher/ Encrypt/Decrypt Version Management &
Interpreter Utility Change Control Utilities

Conceptual Schema Processor

Conceptual

Schema External Artifact

Schemas Storage
File

Space

1. Artifact Catalog
2. Artifact Assembly Instructions Working
3. Process Models File
4. Utility Catalog & Tools Space
5. User Definitions & Profiles

Figure 4. IDSE Level 0 Architecture

19



IDSE Concept of Operations

3.2.1.1 User Interaction Services

The Local Machine Interface, the Session Manager, and the Communication Services of a

Level 0 implementation provide and manage the user interaction services. Each machine

will contain a device-independent IDSE interface. Regardless of the machine type, it will

appear the same, and from it the user will access the session management facilities and

other services under the control of a session manager, who will set up the user's work

environment based on the user profile and usage scenario for the session. The session

manager provides the user with access to the commands executed by the Life-Cycle Artifact

Manager (LCAM) or system librarian. Level 0 will provide rudimentary communication

services that will not be extensive but will provide for data-level integration and allow some

communication among the user, artifact repository, and system librarian.

3.2.1.2 Tool Sets and Data Integration

One IDSE requirement is providing "an integrated set of system development and

management tools" that will consist of both CASE (Computer-Aided System Engineering)

and case (computer-aided software engineering) tools. Upper-CASE tools are automated

tools that support methods, documentation, or decision procedures in the early stages of the
system life cycle (normally, the needs analysis stage through the detailed design stage).

Project planning, management, and control tools are normally considered upper-CASE

tools. Meanwhile, lower-case tools support the construction, testing, integration,

maintenance, or reverse engineering of the software itself. In this document, we use the

acronym CaSe when we want to refer to both upper-CASE and lower-case technology.

Some of these tools will be developed with the IDSE. However, most will be vendor-

supplied. An underlying assumption of IDSE design is that these tools will be operating on

multiple, heterogeneous hardware and database platforms. In a Level 0 installation, there is

no assumption that the tools have been designed by the vendors against any open-

architecture standard, nor that they are integrated in any manner.

A Level 0 IDSE implementation will provide basic life-cycle data integration support as
well as facilities for communication between the tools and the artifact repository. To

provide basic integration capability, Level 0 will provide for data transfer between tools via

the Converter Utilities and the Translation Utility Library (see Figure 4). These utilities

support integration between these largely closed architecture tools at a file-transfer level.

The strategy pursued at Level 0 is to encourage the tool vendors to adopt ASCII file model-

20



IDSE Concept of Operations

data-exchange conventions and provide utilities with tools that read and produce such file

versions of their tool data. The National Institute of Standards and Technology (NIST)

Interim Graphics Exchange Specification (IGES) initiative has successfully employed a

similar strategy for data exchange between heterogeneous Computer-Aided Design (CAD)

systems. For instance, a developer of an IDEFO tool could choose to produce a text file of

the objects that form relations between activities in an IDEFO rnodel (called concepts).

Another vendor could then modify its tool to accept as input a t-.xt file of IDEFO concepts.

For example, an Evolving NAtural Language Information Model (ENALIM) tool vendor

may modify its tool to accept text file input of IDEFO concepts. The Translation Utility

Library IDSE component (Figure 4) would maintain a list of such data providers along with

the type (and format) of the data that they provide (e.g., the IDEFO of Vendor 1 can

produce model IDEFO objects in :he standard model data exchange format). Moreover, the

Translation Utility Library would maintain information on the available consumers for such

data. That is, it would contain information such as, "the IDEFIx tool from Vendor 2 can

consume IDEFO concepts provided in the standard model data exchange format." The

Converter Utilities will provide the requester with the instructions necessary to perform the

required translations.

3.2.1.3 Minimum Artifact Repository

A Level 0 (as well as a Level 1) implementation would include a minimum artifact

repository. We use the term "minimum artifact repository" because the repository Artifact

Catalog database will actually contain only pointers to the objects created in the system

development process. The actual objects themselves will be stored in a file space reserved

for the IDSE. Models and documents will be stored in the reserved file space as

nondivisible entities. For example, storage will be provided for a requirements document

but possibly not for individual requirements. Similarly, a model will be maintained as a

single object, not as individual model elements. Along with other identifying information,

the pointer objects maintained in the Artifact Catalog will contain a brief description of the

artifact to which they point. This description will be available for the user who browses the

repository.

The LCAM is responsible for providing the artifact-browsing and check-out functions. It

is also responsible for execution of user commands and requests pertaining to the artifact

repository. In a minimum LCAR, browsing the repository will mean that the user will

actually be looking at brief descriptions of the artifacts stored in the repository file space.

The descriptions will contain information about the version of the artifact and a description

21



IDSE Concept of Operations

of the data it contains, allowing the user who browses the artifacts in the repository to

collect information about the artifact without ever looking at it. If additional details are

required as the user browses, the artifact would have to be checked-out and the appropriate

tool invoked to examine the artifact (model or document).

The check-out operation is automated in the sense that it does not require intervention by

the librarian. In the Level 0 LCAM version, the check-out procedure would result in a

record being written to a audit-trail file/database. This record is for keeping track of who is

modifying or reading the file. Furthermore, it will be used by the librarian to confirm that

the user who checks out a file actually has the proper authority. In a Level 0
implementation, check-out will not necessarily result in file transfer across the network.

Although the LCAM will be capable of handling the browsing and check-out functions,

check-in is a much more complicated procedure.

When an object is checked in, there are completeness checks that must be performed. In

some cases, they may require several days to complete. For instance, if an IDEFO model is

to be checked in for review, it must first pass a review process. Moreover, the check-in

process will also likely invoke the version management and configuration control process.

In some cases, the version of the object must be changed or the system configuration will

have to be modified by the object being checked in. In a Level 0 implementation, the

integration and communication services will not be robust enough to manage automatic

check-in, which will be a manual procedure handled by a project or site librarian. The

Level 0 LCAM would include the functionality necessary to support this project librarian

activity. For example, Level 0 would provide support for a local site to define and manage

its own system development process models maintained in the repository database. The

project librarian would be able to obtain the procedures for document/model check-in from

these process models. In a Level 1 IDSE, automated check-in would be supported from

these same process models.

The Artifact Repository Manager (ARM) provides the management functions required to

maintain the artifact repository, such as backup and retrieval utilities. It also contains

access functions to the Message Dispatcher/Interpreter utility, Encrypt/Decrypt utility,

Version Management, Change Control Utilities, and IDSE maintenance utilities. The

Message Dispatcher/Interpreter would accept user messages (via the Session Manager) and

place them in the appropriate message log for processing. This message log is accessible

by the project librarian. The EncryptIecrypt Utility provides the librarian with the utilities

to provide security from unauthorized file modification. These utilities have the necessary

functionality to encrypt the names and store them as hidden files in repository-controlled

22



IDSE Concept of Operations

directories. Version Management and Change Control Utilities contain the functionality the
ARM would require to properly manage the object and artifact version control. These
utilities would also manage changes/updates that must be made to previously approved
designs or models. The human librarian could access these utilities from the LCAM for
manually executing the versioning and change control procedures defined in the project
process model. Furthermore, those functions necessary to add tool types and other new

types to the artifact repository will also exist within the ARM. Finally, the ARM contains
the utilities necessary for capturing the IDSE Level 0 Conceptual Schema.

The repository databases include the Artifact Catalog, Artifact Assembly Instructions, etc.
(Figure 4). The Artifact Catalog contains the pointers to the system development objects

stored in the Artifact Storage File Space. For example, if the object pointer in the artifact
catalog is to a model, the following information would represent the model object.

* Name: Name of the model.

• Type: Method used to construct the model.

• Location: Path name to the directory in which the model is stored.

• Tool vendor: Name of the tool used to construct the model.

• Tool machine: Machine on which the tool runs.

* Tool version: Version of the tool used to construct the model.

• Description: Brief description of the model (2 or 3 lines).

* Project: Project for which the model was constructed.

• Author: Chief author of the model, i.e., the creator.

• Version: Version of the model.

• State: Model state, i.e., in design, released, etc.

• Date created: Date the model was first saved.

* Date last modified: Last date on which the model was checked out for

modification.

The Artifact Assembly Instructions will be procedures used to construct complex artifacts

not explicitly stored. One example is a report consisting of several different documents and
models. The artifact assembly instructions would contain the procedure to be followed to

gather the required information and construct the report. In the Level 0 implementation,
this assembly would not be automated. Instead, the user will be given a required file list

and told how to construct the report.

23



IDSE Concept of Operations

The Utility Catalog and tools database will maintain information about the various tools and

utilities available in the IDSE. The information type maintained in this database will be

about the machines on which the various tools will run and the latest version of those tools.

The user definitions and profiles are maintained in the User Definitions Database. These

user definitions identify the legal users of the system and the roles they can play. The user

roles identify for the session manager which set of commands, and in general what

information, a particular user is entitled to access. In higher-level implementations, user

roles will be used to interpret the meanings of statements or commands a user enters.

Utilities in the utilities catalog will be provided to modify the user definitions and profiles.

These will be used by the session manager to determine user access. Moreover, the

conceptual schema processor will insure that data access and control are properly enforced

and that data integration and conversion will occur as expected.

Finally, associated with a minimum artifact repository will be artifact storage file space and

working file space. The artifact storage file space will be used for secure storage of the

life-cycle artifacts, which include such objects as database files and flat files of the models

created by the IDSE tools. Any documents created in the course of a system development

(e.g., needs and requirements documents, management reports, etc.) are also managed in

the artifact storage. The working file space is used for storing mail files and message logs,

which will be maintained for the messages sent by the librarian to members of the

development team and other parties. Temporary files used to manage such objects as

models or documents awaiting review (or some other check-in activity) will also be

maintained in the working file space.

Perhaps the most important Level 0 aspect is that it allows for multiple vendor tools on

multiple hardware platforms. Furthermore, it supplies a minimum amount of tool

integration with the translator utilities. There is provision for increased system

development automation, and the Level 0 IDSE is extensible (new tools can be added).
Level 0 does provide for increased control over a system development effort; however,

because the primary control over the development is in the hands of the project librarian, it

is referred to as a manual form of integration.

3.2.2 Level 1 IDSE

Those sites that implement a Level 1 IDSE will gain increased integration capability while

still retaining all of the functionality of Level 0. In a Level I implementation, support will

be provided for both data and function integration through the establishment of a

24



IDSE Concept of Operations

client/server relationship between tools. Furthermore, Level 1 will provide more robust
communication services. Figure 5 shows the architecture of the Level 1 IDSE.

TOOL SETS
Local Machine
IDSE Interface * CASE and case Tools

JIDSE Development &
Maintenance Tools

Session Manager
Converter Utilities

Communication
Services I Translation

II Utility Library

(Integration Services) Life-Cycle Artifact Manager

Integration Services Artifact Repository Manager
Manager

Message Dispatcher/
Network Transaction Interpreter

Manager
Encrypt/Decrypt

Integration Services Utility

Planner Version Management &
Change Control Utilities

Plan Executor Conceptual Schema Processor

Conceptual Storage
Schema UserD-Extirnal File

Schemas Space

1. Artifact Catalog
2. Artifact Assembly InstructionsJ
I. Process Models
4. Utility Catalog & Tools
5. User Definitions & Profiles

Figure 5. IDSE Level 1 Architecture

25



IDSE Concept of Operations

Compared to Level 0, Level 1 IDSE has the following:

1. All of the functionality of Level 0:

"* device-independent user interface,

"* Session Management facilities,

"• Translation Requirement Server and the Translation Utility Library,

"• Artifact Repository Manager,

"* Encrypt/Decrypt Utility,

"* Version Management and Change Control Utilities,

"* The Conceptual Schema Processor,

"• repository database and schemas, and

"* Artifact Repository file space.

2. Increased functionality in:

"* Communication Services,

"• Message Dispatcher/Interpreter,

"• Tool Sets and

"* Life Cycle Artifact Manager.

3. New functionality in integration services.

3.2.2.1 Increased Functionality of Level 0 Concepts in
Level 1

For most notable Level 0 IDSE users, the Level I change is that the LCAM will

automatically handle the notifications and check-in tasks of the life-cycle data management

and control. In Level 0, the LCAM provided browsing and check-out, but check-in was
handled as a message to or some other communication form with the project librarian.

With the. improved network/communication services provided with Level 1, the check-in

process is an automatic procedure. In Level 1, an IDSE will provide automated

enforcement of the design/development policies and rules of the organization or project.
This means that the LCAM will have to interpret a project development process defined in

the process model. Although the process models must be understandable by the human, in

Level 1, it will be possible for the LCAM utilities to determine the procedures to follow in a
project by processing the process models. The Level 1 LCAM will follow the procedure

outlined in the process schema (the stored version of the process model) by interpreting the

26



IDSE Concept of Operations

project process model just as the human librarian did in Level 0. For example, in the case

of a model check-in-for-review, it would electronically ship the model to the reviewers and

then wait for the comments to return. After a predetermined period of time, the LCAM will

begin to query the reviewers for the return of their reviews. This ability for (1) long term

transactions, (2) model based processing of user requests, and (3) the automatic

notification facility is not available in the Level 0 IDSE. This additional functionality is

provided by the Message Dispatcher/Interpreter and LCAM in Level 1.

3.2.2.2 Level 1 Integration Services Concept

One of the notable aspects of the various IDSE technology levels is that each one offers

more advanced integration while continuing to offer all the functionality available at the

lower levels. In Level 1, the integration increase is offered via the Integration Services

Manager (ISM) and Integration Services Planner (ISP).

The ISM will be responsible for automating much of the manual integration provided by the

Converter Utility in Level 0. A motivating concept behind ISM is that an installation

should not be forced into some preconceived notion of what future information integration

needs will be. The ISM will be a flexible, evolvable approach to provide information

integration for an IDSE.

The ISM will allow the IDSE to focus on providing the integration of tools 6 and the

information created by them by establishing a client/server relationship between two of

them. In a system development effort, information created in each stage will be required by

later stages. Generally, it is true that the different developer tools do not require all the

information created by other tools to perform their downstream functions. However, if the

tool user had access to some of the data created by a previous task, it would decrease the

amount of time required for the current task. With today's technology, this data often has

to be re-created or at least reentered. With a services-based approach to integration, this

redundant data entry would, over time, be eliminated.

One of the design goals of the services-based approach is to minimize the modifications

vendors will have to make to their tools in order to accommodate the integration needs of a

particular site. By logging the services required at a site, a vendor can provide just those

6 The word "tool" is used to refer to any of a number of automated system development modeling method

programs or automated project management aids.

27



IDSE Concept of Operations

required services to be responsive to the needs of that site. Since most tools address

different areas of the development process, only a portion of the data created by a tool will

be needed by tools used in other project phases. The ISM will know what services are

provided by each IDSE tool and how to invoke them. For instance, when building an

IDEF1 model, the modeler might want to use the concepts/relations from an associated

IDEFO model as input to the IDEF1 modeling activity. In a Level 1 IDSE, the user of the

IDEFI tool should be able to request the IDEFO concepts from the desired model. The
ISM would then determine if such a service is available. If not, it would invoke the ISP to

determine if a set of services could be assembled into a plan to accomplish the desired
results. Such a plan might call for remotely invoking the tool that created the IDEFO
model, loading the model, and creating a file that contains the desired data.

LCA

Repository LCAR Storage
Facilities, including

brary of Generated
Plans & Library of
Tool Information

LCAR Manager &
and Utilities,

Local Tool Including
Local Tool ISM/IDSE

'/Storage _ Maintenance

l •-- "Mransacetion i.

Too Session-. :Maager .:.... .
" Plan

Builder

Figure 6. Integration Services Manager

28



IDSE Concept of Operations

Figure 6 shows IDSE utilities (beyond the ISM/ISP components) that will be required to

provide these enhanced integration services. These utilities include Network Transaction

Manager, Plan Builder, and Plan Executor. In addition to these utilities, IDSE integration

services will also include ISM maintenance tools, a library of pregenerated plans, and a

library of tool information. The ISM maintenance tools will be the utilities provided to

allow IDSE sites to extend the integration services that they provide. These utilities will be

used to maintain a library of service plans and the database of service advertisements. The

library of plans catalogues frequently used service plans at the site. The database of service

information consists of the information about the data or function services available in the

system. It will include such information as tool identifier, tool vendor, tool version and

type, and the format of the data either required or produced. The library and the database

of advertised services will be used by the ISM to provide requested services.

A data or function service request will be communicated via the Session Manager and the

Network Transaction Manager to the ISM, which will interpret the integration request and

pass it to the Plan Builder. It will be the Plan Builder's responsibility to determine if the

user's request can be satisfied. Quite often, the service will be as simple as a data format

translation. In such a case, all the planner would have to do is match the request format

against that of the list of available services. However, there may not be a simple match, in

which case the planner will attempt to construct a sequence of translations using the

available services. Once a valid plan for the service request has been built or extracted from

the library, the plan is passed to the Plan Executor, who will execute the plan and return the

results to the requestor. If for any reason (such as inability to access one of the required

tools in the plan) the plan cannot be executed, it will be passed back to the user with an

explanation. For example, not all the tools at a site will be "attached'"7 to the IDSE. In the

case of an "unattached" tool, the ISM would determine that a particular tool produces some

of the data required to execute a plan but would be unable to initiate remotely the execution

of that tool. In this rase, that step of the plan would be passed to the user with instructions

describing the actions to take to execute that step. The user will perform the necessary

actions and then instruct the Plan Executor to continue.

7 Tools may be either attached or unattached. Attached tools are those that have been modified by the tool
vendor to exist in the IDSE's integrated environment and to take advantage of all of the integration services
available. Unattached tools may be used in the system development effort but are not available from within
the integration services environment.

29



IDSE Concept of Operations

This services approach to integration is dependent on (1) service advertisements

(advertisement), (2) service protocol specifications, and (3) service contract specifications.

Special utilities are needed in the Level 1 IDSE to capture this data. A service

advertisement is a high-level description of services provided by the individual IDSE tools.

An example is "that a particular tool wil! convert some of its data into a form suitable for

use by another tool." The protocol for a service provides all the information needed by the

Plan Executor to execute a tool remotely, and if necessary, to provide the advertised

service, which contains such information as what version must be used, the invocation

requirements of that tool, and the execution environmeiit requirements for that tool. The

contract specification will contain the data format and the content description of both the

input to and the output from a service. The IDSE Level I will contain utilities for

registering new services with the ISM and for describing and storing these three types of

specifications in the artifact repository. The three languages for expressing these

specifications will be discussed in more detail in Section 3.3.3.

A Level 1 implementation of the IDSE provides the advanced integration features of the

Integration Services Manager without losing any of the Level 0 functionality. Moreover,

the more robust communication/ networking facilities available to a Level 1 IDSE enables

enhanced control over the development process through automation of many of the

configuration control functions described in the Level 0 discussion above.

3.2.3 Level 2 IDSE

The Level 2 IDSE is focused on providing advanced support in the following areas:

"* object-level management of the Evolving System Description,

"* improved Version Management and Change Control Utilities, and

"• increased set of integrated tools.

In Figure 7, we see that two new components have been added in the Level 2 architecture

to provide this advanced functionality: the ISyCL Loader and ISyCL Reader.

30



IDSE Concept of Operations

Local Machine TOOL SETS
IDSE Interface • CASE and

case Tools
• IDSE Development &

Maintenance Tools
Session Manager

Converter Utilities

Communication Translation
Services Utility Library

Integration Services Life-Cycle Artifact Manager
Manager

Network Transaction Artifact Repository Manager

Manager Message Dispatcher/

Integration Services Interpreter

Planner Encrypt/Decrypt

Plan Executor Utility

Version Management &
ISyCL, ISyCL Change Control Utilities

Loader Reader Conceptual Schema Processor

.• a -•Schemas

Object Repository
1 2! 31. Evolving System Description

4 2. Life-Cycle Artifact Database
5 3. Process Models

4. Utility Catalog & Tools
5. User Definitions & Profiles
6. Object Database

Figure 7. Level 2 IDSE Architecture

31



IDSE Concept of Operations

3.2.3.1 Object/Artifact Repository

In Levels 0 and 1, IDSE was supported by an Artifact Repository, but with a Level 2

implementation, the capabilities of data management changes granularity from files to

objects. The Level 2 IDSE LCAM and ARM will manage a repository that contains the

actual information objects created in the system development process. It will be

responsible for storing and maintaining the individual information objects making up the

artifacts that are created in the development effort. Thus, a Level 2 IDSE would manage

the individual model elements of approved/released8 system models. It will also manage

such items as individual requirements statements, design rationale statements, etc. Such an

object repository would support better control, sharing, and analysis of these items. Site-

specific change control policies can be implemented, which will provide the automatic
propagation of requirements and design changes. In this environment, when a requirement

is modified, the system will be able to notify the user immediately of the other design

objects affected. Finally, the Level 2 repository will provide for a more automated

approach to the difficult issues of version control and configuration management. The

inclusion of ISyCL descriptions will be the primary reason this object representation and

tighter system development control will be possible.

ISyCL has been designed to meet the definitional and knowledge representation needs of

system design, from physical data description (low level) to the requirements of an analyst

(moderately detailed) and the description of the business rules (high level). 9 ISyCL

provides an object-centered approach to model elements and provides facilities for attaching

constraints to them. It is designed to support all types of individuals involved in a system

design effort, from the area expert to the software designer. ISyCL is a family of

languages. To address the variety of system development needs, ISyCL is organized into

layers and slices. Each layer is designed to support one of the types of individuals who

would be involved in an information system development effort. Furthermore, because it

is one language, constructs expressed in one of the higher-level layers can be easily

expressed in lower layers. Expressive power increases as one moves down through the

8 "Approved" and "released" are terms used to indicate the state of a model. The meaning of these terms
will be entirely defined by the site that implements the IDSE.

9 Decker, Louis P., and Mayer, Richard J., ISyCL Technical Report, AL-TP-1992-0019, Armstrong
Laboratory, September 1992.

32



IDSE Concept of Operations

layers at the cost of expressive clarity. Each slice is designed to address a particular

method, and slice is composed of a number of the previously described layers.

The current ISyCL design has identified four layers, each one addressing a different but

vital group of individuals in an enterprise that will influence the information system design.

1. Area Expert Layer: The individual that this layer is designed for is
focused on ensuring that the information represented in the particular
information system model is consistent with his or her expectations.

2. Analyst Layer: The analyst would use this layer to attach constraints

to the models and model elements which would have otherwise been
expressed as text. In the system development process, graphical modeling
methods are used to describe various system aspects. These languages
derive much of their power from the fact that they provide a graphical
picture of some aspect of the system. To maintain readability, they must
limit the amount of information in a diagram. Thus, some of the
constraints discovered during the model development cannot be expressed
in the method syntax. This information is generally expressed in the text
associated with the model. The analyst layer provides a means of capturing
these additional constraints and linking them to the various model elements
in a manner that can be interpreted by both humans and computers.

3. Information Systems Design Layer: This layer is designed to
facilitate the transition of system models into the actual implementation of
an information system. Since the implementation of an information system
will be largely influenced by programming issues, this layer of ISyCL
provides a more "programming language" type of syntax. It is expected
that the information systems designer will use the information obtained by
the analyst and implement the actual information system using this layer.

4. Method Formalization Layer: This is a special layer used for
defining the "slices" of ISyCL that support the different constructs required
to support the various modeling methods associated with the system design
process. Each of the "slices" defines the constructs required by a given
modeling method, one per method.

The primary functional addition of the Level 2 IDSE will be the provision of support for the
capture and management of fine-grained information about the Evolving System
Description. The Object Repository will store and maintain the individual development

33



IDSE Concept of Operations

artifacts (such as model elements) in this description. ISyCL provides the neutral

representation language for storing these artifacts.

3.2.3.2 ISyCL Loader and Reader

A Level 2 IDSE implementation will have a set of ISyCL Loaders and Readers that enable

the construction of the object-based artifact repository. These utilities are considered a part

of the integration services provided by the IDSE. An ISyCL Loader translates an ISyCL

data file created by a tool into the ESD. The ISyCL Reader produces an ISyCL

representation of a model from the data stored in the ESD.

Each tool that supports Level 2 must be able to generate an ISyCL representation of models

created with that tool. It must also support the attachment of ISyCL constraints to models.

In other words, a text editor must be supplied in which constraints can be written which
will be appended to the ISyCL representation of a produced model. The tool is not

required to do anything with these constraints other than append them to the ISyCL dump.

Due to the ISM and ISP, the typical user will likely never worry about creation of ISyCL

representations. The user would simply direct the ISM to 'ave a model to the ESD. Given

that the user has the authority to modify the ESD, the ISM would invoke the tool to
produce the ISyCL representation and then direct the ISyCL Loader to modify the ESD.

The only ISyCL statements the modeler will see are the constraints he or she creates in the

model construction process.

It is important to keep in mind the ISyCL layers. If the individual creating the model is not

an analyst, then the constraints added to the model will be the English-like, area expert

layer constraints. It is likely that an analyst would review a model created by an area expert

and elaborate on the constraints (using the analyst layer of ISyCL). The analyst would
probably then need to submit the model for release approval. Finally, whoever was given

the necessary authority would save the model to the ESD. If the ESD was going to be used

to enhance the information system, then a systems programmer would become involved.

He or she would start with the analyst layer ISyCL representation of the necessary portion

of the ESD and add the necessary detail to create a systems layer ISyCL representation that

could be compiled to produce the schemas and control logic for the information system

using the enterprise's Database Management System (DBMS).

The ISyCL Loader will place the model objects into the ESD. In order for a second tool to

access this data, an ISyCL Reader must be provided to interpret/translate the neutral

description of the ESD into information that is usable and understandable by that tool. This

34



IDSE Concept of Operations

use of the ISyCL and the Loader and Reader will eliminate the need for tool format

translators that were a part of Level 0. However, it will also mean that all the "attached"

tools within the Level 2 implementation must generate and parse ISyCL model

representations constructed using the method they automate.

3.2.4 Level 3 IDSE

The fourth IDSE implementation level (Level 3) is built on the same architecture as Level 2,

with some minor modifications (Figure 8).

The other IDSE levels provide facilities that enable model elements to be stored, examined,

and transferred between various tools. On the other hand, they do not have facilities for

interpreting the meaning of the model elements. The Level 3 IDSE implementation

provides this functionality through the use of Domain and Method Ontologies. With the

inclusion of this functionality, the Level 3 IDSE technology provides support-for (1)

automatic model translation, (2) data consistency across the entire system development

process, and (3) maintenance of traceability links between data artifacts.

An ontology, simply stated, is the theory of "what there is" in a particular domain. It is a

knowledge base that contains information about the concepts, relationships, and situations

in a domain. In particular, it contains the terminology information used to describe these

concepts, relationships, and situations. As seen in Figure 8, there are two types of

ontologies needed for the Level 3 IDSE: Method Ontologies and Domain Ontologies. A

Method Ontology is a meta-level description of the objects, relationships, and constraints

pertaining to a particular method. For example, an IDEF1 Method Ontology would contain

objects such as Entity Classes, Attribute Classes, and Link Classes. It would also capture

IDEFI constraints such as the no-repeat and no-null rules. There must be a Method

Ontology for each method supported by the Level 3 IDSE. A Domain Ontology is a meta-

level description of the universe of discourse relating to a specific domain. For example, if

one is producing automobiles, the Domain Ontology might include such objects as Engine

Blocks, Transmissions, and Steering Wheels, as well as descriptions of the relationships

between them. These ontologies will be used to generate interpretations of model objects,

from one modeling method used under the IDSE to facilitating automatic generation of

another model type.

35



IDSE Concept of Operations

Local Machine TOOL SETS

IDSE Interface • CASE and
case Tools

• IDSE Development &

Session Manager Maintenance Tools

Communication Converter Translation
Services Utilities Utility Library

Integration Services Life-Cycle Artifact Manager
Manager

Network Transaction Artifact Repository Manager

Manager Message Dispatcher/Interpreter

Integration Services Encrypt/Decrypt Utility
Planner En__ ypt/DecryptUtility

Plan Executor Version Management &

ISyCl, ISyCL Change Control Utilities

Projector Interpreter Conceptual Schema Processor

Conceptual
cSchemae

ESD --=-Exeral

ESD Schemas

1 2

Object Repository
4 1. Evolving System Description

5; - 2. Method-Specific Ontologies
6 3. Domain-Specific Ontologies

S8 4. Life-Cycle Artifact Database
5. Executable Process Models
6. Utility Catalog & Tools
7. User Definitions & Profiles
8. Object Database

Figure 8. Level 3 IDSE Life-Cycle Artifact Object Repository

36



IDSE Concept of Operations

A Method Ontology and Domain Ontology used together will guide the information transfer

from a model into the Object Repository via the ISyCL Interpreter (Figure 9). The

interpretation process takes a model element, the type of model, and the purpose of that

model (as-is or to-be) and creates assertions about the subject area being modeled which

could be inferred based on the Method and Domain Ontologies. These assertions are then

added to the repository and existing facts, and assertions relating to that element are

examined to ensure consistency. In the reverse direction, the ISyCL Projector, which uses

a particular Method Ontology and the Domain Ontology, can generate a partial model in the

particular method given the existing information in the Object Repository. These

knowledge-based systems are composed of the ISyCL Interpreter and Projector, and the

Ontologies will provide IDSE users with a truly integrated information system development

environment in which information developed in one phase of a project can be automatically

used to decrease the design and development time on other phases of the project.

Possible private storage facilities
for models developed using the tool.

Automated Tool's resulting model
Tool translated into ISyCL Code

by tool provide translator.

Evolving
S•yCL3ystem

System Description InyCL Description
ISyCL structures

interpreted and projected, is St ur
with the use of

the Ontologies, Ontology
into method-specific Method
data items generating

a partial model
that is read intoKnweg-ad

the tool's environment for Systems
display and modifications. ISyCL

Projector

Figure 9. Level 3 Information Transfer and Interpretation

37



IDSE Concept of Operations

4.0 IDSE Usage and Application Scenario

IDSE is an environment designed to aid and support those individuals who are responsible

for developing information systems. Its features include system development tools, data

and function integration utilities, and management and storage facilities for life-cycle

artifacts. The features of this environment have been discussed in detail in previous

sections of this report, but to a system user the most important issue is how to interact with

the system and what it will do in order to execute the commands received. In other words,

how does this IDSE work?

session and procedures that the user would wish to perform. In this section, we will

examine the IDSE from a Level 0 user's point of view. That is, w( will provide some

insight into what a user could expect to see, what commands he or she would expect to

use, how the environment provides for the execution of those commands, and what the

system will do to provide a minimum integration development support environment (IDSE

Level 0).

Perhaps the easiest way to understand the functionality of a system is to explain a typical

The IDSE user would login to the IDSE from his/her personal computer. At this point, the

session manager would assume control from the computer operating system and would

maintain control until the user exits the IDSE session.

Figure 10 depicts what a typical login screen would look like. It shows that the user must

enter his or her name, password, role, and project. A name and password are used for

IDSE access control. The "role" is what the user intends to work in. It is not unusual for a

user to assume several different roles in a development effort. For example, an individual

may be both a designer and a programmer. When the person assumes the role of designer

he or she requires one type of tools, and as a programmer, another. Input by the person

acting as chief administrator would have one meaning to the system, and similar input by

the same individual acting as a system analyst would assume a different meaning. Thus, it

is important that the system know what role the individual is assuming. The system must

also know what project the person will be working on. An individual may at any one time

be performing tasks on several different projects and possibly assume different roles in

each effort. By knowing what project the person is working on, the system will know

which files he has access to, and with an installed System Development Framework (SDF),

it will know where within the process his or her efforts are to be focused.

38



IDSE Concept of Operations

The user may choose only to enter his or her name and password. The system will take

this information and, through the LCAM, select from the User Roles and Profiles

definitions the projects and roles the user can access. This information is returned to the

session manager in the form of a table (Figure 10). A list of projects will be displayed for

the user to choose from. Based on the chosen project, the user will then be allowed to

choose from a list of role types that he or she can assume for that project. In any event

(entering all information or choosing the selection route), the session manager will maintain

this table of projects and roles until the IDSE session has ended. Moreover, it will maintain

the role and project information until either the session ends or the user elects to change

them. This role/project information is used by the system to determine such things as what

files the person can work with.

(name, role, project)

SeTable ofroles by project that anceInterface iuser is eligible to assume.

TLogin Display 2

IDSE

User Name: Record Instance
of

Password: User Access
(name, role,

Role: project)

Project:

If user logs in and provides only his/her name and
password, the system will return the following.

Mousable list of projects.

Mousable list of roles that the user can
assume for the selected project.

Figure 10. Login Display for the IDSE

39



IDSE Concept of Operations

Once the user name, role, and project are established, the session manager will display a

list of available usage options in that context. Figure 11 shows the display type presented

to the individual assuming the role of modeler. From this, we see that a modeler may

make one of several requests: use some modeling tool, check in a model, request data

transfer from some other model, check out a model, browse the stored artifacts, change

projects and/or role type, or quit. This initial display of options would be quite similar for

other role types and may even be identical. The difference would be in the results of

selections from the list. For example, in this screen, selection of the "use tool" request

would display a list of modeling tools that the modeler (based on name and project) can

use.

Session Manager

t
Display Options

List of tools that the user is currently eligible to use based onDisplay Based On User Role c oe oeadpoet
_________________ chosen role and project.

I= In Level 0 IDSE, this operation will be largely manual due to

m Request Use of Tool 1• the limitations of the network.I
= Request Check-In Artifact A request to use the translators. It may result in a list of
= Request Data previously stored files of data associated with the project or a

= Request Check-Out list of models from which some data may be derived.

_ Request Browse -A mouseable list of files or data that the user may check out.

Request Role/Project Change -Allows user to browse artifacts stored in the project databases.
Exit IDSE• User may examine the descriptions associated with the artifacts

and select one for check out. Check out would depend upon
user's role type.

Allows the user to change his/her role and project without

exiting the IDSE interface.

Returns control to the computer operating system.

Figure 11. IDSE Options Available to a Modeler

The IDEF3 process model in Figure 12 shows what would happen when one of the options

from the menu depicted in Figure 11 is selected. The process model actually describes the

processes that would occur in a Level 0 implementation of the IDSE; however, its level is

high enough to allow almost any automation degree. At Level 0, requesting a tool will

produce a display of tool descriptions. The user would indicate which tool to use, but, for

40



IDSE Concept of Operations

most tools, would have to exit the IDSE session to actually use it. The purpose of

indicating a selection would be purely for bookkeeping purposes. The system can record
the tool choice, user, role, and project. A record of this type would allow project directors

to keep track of tool usage and to determine if the prescribed tools are being used. At this

level, automatic enforcement of tool usage is not possible.

Check-in is the most manual procedure in an IDSE Level 0 implementation, but there is a
procedure to be followed which must be enforced by the librarian. The check-in

procedure, as it would be displayed to the librarian, is pictured in Figure 13.

As we can see, there are several operations that must be performed when any artifact
(model, document, etc.) is checked in. First, the file must be made available to the librarian

("Place File in Receiving"). This may entail simply writing it to a diskette, or with

sufficiently advanced communication facilities, it may be transferred over a network to a

special working directory. The user must register the file "Complete the Check-in Form."
A sample check-in form appears in Figure 14. This form may be mailed via the

communication network to the librarian or printed and hand-delivered. Basically, what this
form contains is the information that is needed to describe the artifact in the LCAR and
information that will assist the librarian in determining the version and status of the file.

One action associated with the check-in procedure not indicated in the IDEF3 model in
Figure 13 is the user notification to the librarian that there is a file ready for check-in. This
omission is intentional because in a Level 0 IDSE, this notification will very likely be
handled without the aid of the communication network.

Figure 15 provides an overall description of this check-in process. In this process, after

determining that the user checking in the file has the authority to do so, the librarian
accesses special commands that will allow the extraction of project check-in procedures
from the system development models for the project site. These may be in the form of
IDEF3 process models or may be as simple as a list of actions the librarian must execute.

The librarian will be responsible for versioning of the artifacts (Unit of Behavior (UOB) 6
in Figure 15), executing file encryption utilities (UOB 11), ensuring that all review
procedures are followed (UOB 12), creating new artifact pointers (UOB 7), and the

execution of the commands that will store files in secure directories (UOB 13). Most of the
details concerning when to version and who does the reviews will be contained in the
process descriptions. The actual objects versioned in the LCAR are not the files
themselves. The objects will in most cases be pointers to the stored files. The pointers
contain the pathname by which the file may be obtained. Thus, different versions of one of

41



IDSE Concept of Operations

these pointers will contain different pathnames, and therefore, effect version control of the

file. File encryption actions will be similarly modified in the minimum LCAR.

Request Sehect -I Tool_____Tool___

Request Prcessn
-- RolePreck-I RoProjeuet_____________

Rhnequs rsn Changeso Prcs

IDSEDas

Ar ifa ts 
to w

Figure 12. ID 7ueF3 P roess oent fort aelMotdelrUigaLvl0I

Brws o Pssbl + A42fc



IDSE Concept of Operations

Placeiig"3

File in Proe d

ta o (Place File
TPerform win Special

prodced-whn one. moeDsbitaduig itrsenutitortepoucinoysm te

Prceur Return to
|Level 0 .. ar'1.IIDSE

model d e g e oSend Form ta a rod ced
_lto Librarian / I 8t

L__*Check-In 1-61
/ Form IU

5 T_ Print Check-In

Forr o for Hand
Delivery

to1Librarian

Figure 13. Check-In Procedure for IDSE Level 0

The primary integration support of a Level 0 implementation will be provided by the

translators (the Request Data process informat For a tigure 16 illustrates how the data

translation/conversion is expected to work. When the user "Requests Data" from the
IDSE, he or she will be given information on how to obtain and use the requested data.

These translators will exist primarily for the purpose of taking some of the data that was

produced when one model is built and using it as input into the production of some other

model developed using another method. It is an accepted fact that data produced by the

different modeling methods is related. Also, not all of the data produced by one method is

required or even usable in another. A tool for which a translator has been written will, in
addition to producing its normal model data, be capable of producing a separate data file in

a standard model data exchange format. For a tool to use this data, it must be modified

slightly to allow input other than the normal keyboard input. This data will very likely

never result in a complete model of the second type. It will provide:

decreased development time for a model that uses input in the form of data

gathered from a model (in a different method) developed in an earlier phase (or

for that matter another project), and

43



IDSE Concept of Operations

an assurance that models and systems are more consistent than those developed

without this data sharing.

Check-In Form

User Name: Filled in based on login data.
Name of Project: Filled in based on login data.
User Role: Filled in based on login data.

Name of File:

File Location:

State of Completion:

Purpose of Check-In:

Type of Data: [ d lIst

Tool Used:

Tool Version:

Description of File Contents:

This description should contain informnation. such as the
typefimodel (e1g., IDEF1), the yIpe of document(e.g.,
Atat repro), orcontens ofa list (eag, list of
requkirements), ti , MreovetrtI , the descriptioui should be
detailed enough so that someone browsing life-cycle
artilacts would have a clear unserstanding of the data
located by the artifact pointer.

Figure 14. File Check-In Form

Although the data transfer from one method to another is primarily a manual process even
with a Level 0 implementation, the IDSE users are provided with assistance that has

hitherto not been available.

The request for file check-out is a much more automated process than checking in. As

shown in Figure 17, after requesting the "file check-out" option, the user will be presented

with a list of the artifacts that he or she is allowed to check out. This list is built by the

system using the stored user name, role, and project. From this list, the user will select the

file and version of that file he or she wishes to check out.

44



IDSE Concept of Operations

IIssue Error- [ Terminatel
F rLv LFile Not i-eCheck-sn

Receive r h e f Confanrm behecked Out by

r r) a Use ProjectIV I I onine
for Check-n r f t Check-ou romtFirm"nGet infoxmao

fetFile ne sing Chck-Ins
Aftifale vi Form, Upa te
PointermIne Pointer o btoyt mrite

SI l 9 7 1a" File in LCAR
SICreate New I Using Check-In Diecor

. Version for B. Form, Modify >erform File16

lArtifact Pointer Pointer DataEncr

45 LJpdate Pointer
_lwith File

retArti•fact JIn l~ Chec- In Location
L.Pointer for [4., Form, Fill In L 171

File [ Pointer Data [ Execute File

1~~~ 12--- ab Reie
/151

Figure 15. Level 0 Librarian Check-In Process

Ile automated check-out process will be as follows.

1. Get purpose of the check-out from the user.

2. Confirm that the file can be checked out (i.e., not already checked out to some

other user), and if so, continue.

3. Make a record of the check-out containing information such as:

file name: Inserted by the system.

file version: Inserted by the system.

permanent Provided by the system from

location: artifact pointer.

45



IDSE Concept of Operations

user name: Inserted by the system from login file.

user password: Inserted by the system from login file.

project: Inserted by the system from login file.

purpose: Provided by the user requesting the file.

4. Place check-out record in check-out list.

5. Place file in temporary directory.

6. Inform user of how to obtain the file.

Vo "S List of tools by method that have data
translators/convertersMouseable list contains

method -- tool -- data output

IDEFO Vendor I Concepts &
aors Activities

0
Stored Data Files for Project

SSelection
of item

provides

3 1. Description of how the output data
90 is formatted. (For the above example, it

would include the number of files produced.)
2. What machine the tool runs on.
3. Which tools and methods can use

bList of files that have already the data.
been produced by the translators. 4. What model must be loaded into the tool

Mouseable List contains to produce the output.
contents 5. How to find the file containing the

producer of contents model.
data format of contents

IDEFO concepts Vendor 1 text file

S

Selection of item
provides

1. Description of how to obtain the file
containing the data.

2. Which tools can use the data.
3. Which modeling methods can use the

data and suggestions on how to use it.

Figure 16. Requesting Data in a Level 0 IDSE

46



IDSE Concept of Operations

Reuest I IPresent List I Select Process

ChckOt --- of Possible• -JArtifact 10 Check-Out

-1- - 4 Artifacts 15 16

Figure 17. Check-Out Process

This record will be available to the librarian when the user checks in the file at a later date.

The librarian will use this record to determine if the user is legally entitled to request a

check-in. Thus, even though the user may be able to circumvent the controls and actually

modify a file without checking it out, the librarian will not allow the file to be checked in to

become a part of the system description unless there is a check-out record. This procedure

provides for system description security by not allowing uncontrolled modifications.

One of the most common activities that database users perform is browsing. In the LCAR,

this will be just as important. Therefore, one of the commands available to the user will be

the browse request. In a Level 0 implementation, the users will not browse the actual

artifacts themselves but the objects that point to them. When a file is checked in, a form is

filled in and later used to either update or create the pointer to the object. Although the

check-in discussion is applied to a modeler checking in a model file, all check-ins will

require some type of form and pointer update. This means that the pointers stored in the

artifact catalog will contain information that would be useful and informative to the

individual requesting the browse operation. For example:

"* the description of the data contained in the file,

"* what data types are in the file,

"* file version and status, and

"• tool and version of it used to create file.

The information to be viewed by the person browsing the artifacts will be limited only by

the user's access privileges and the amount of data to be stored in the pointer to the artifact.

To browse the artifacts, the user will follow the procedure outlined in Figure 18. The list

provided to the user will normally be only those files of interest to his or her role and

project. However, there will be some user role types that will have browsing access across

project boundaries. These will be needed so that project and model development leaders

can inspect information about files maintained for other projects. They may wish to copy

files from other development efforts to aid those working on their project. The data about

the files displayed for the requestor will also be based on the user's role type. For

47



IDSE Concept of Operations

instance, a typical user will not be provided with information about where the LCAM has

stored the files. A librarian may have need for this information; therefore, if the user is a

librarian, it will be provided. As the user browses the artifact descriptions, he or she may

select one of the files for either reading in its entirety or for modification. If this occurs,

the system will switch to the check-out mode, verify that the user has read/modification

rights, and then process the check-out as described previously.

Finally, IDSE would allow a user to change role or project declaration and ultimately "Exit"

the system. Each initial menu will contain these options. The reason for them is that a user

will likely have more than one role on a project and will also be involved on more than one

project at a time. The user will be able to change roles within the project or just change to

another one without leaving IDSE. The effect of these commands would be to reset the

current role and project designators. The "Exit" command would in effect allow a graceful

termination of an IDSE session. It would remove from local memory the information about

the user and prepare the system to be used by another.

Request Browse

etuser
role and
project.

Present list of Artifacts
appropriate for the

user.

OThe user can elect to check The user will select from this list the
out one of these artifacts for object he/she wishes to examine in

reading or modifying. more detail.

The data stored in the
The user's access rights to the request are object pointer will be

confirmed, the browse request is displayed for the user.
terminated, and the check-out process

initiated. 
E

The user can read this material
then return to the list to examine

another object description. ,0

Figure 18. Browsing the Artifacts

48



IDSE Concept of Operations

At the beginning of this section, we stated that IDSE is an environment designed to aid and

support individuals responsible for development of information systems. We have

described how even a Level 0 implementation provides the means for transferring data from

one development phase to another via the translator/converter utilities. Finally, it provides

for control over the system development process by providing an audit trail of system

usage via the check-out facility and human enforcement of the local system development

process via the librarian-controlled check-in procedures and commands.

5.0 Summary and Conclusions

In summary, the IDSE concept is structured around the idea of support sophistication

levels. The notion of an IDSE level should not be confused with IDSE versions; levels

represent levels of technological sophistication. Each level represents a complete and viable

development support environment, not a version of some environment. Level 0 represents

what we believe is a reasonable environment requiring little or no additional computer

resources investment from the implementing organization. Indeed, for a small

organization, this may be all it will need for the foreseeable future. Advancing from Level

0 to Level 3 will, with each step, provide increased integration support, increased

automation for the system development process, increased tool sophistication, and

correspondingly require increased financial and computer resources.

The concepts behind the development environment for IDSE have five general requirements

placed on the design of each level. Each IDSE level must provide:

1) an integrated set of system development and management tools,

2) automated support for information transfer between tools,

3) management and control of the system development process,

4) management of information system design artifacts, and

5) IDSE internal development, management, and evolution capabilities.

In this section, we will summarize how these requirements would be addressed in each of

the IDSE levels.

49



IDSE Concept of Operations

5.1 Integrated Set of Development and Management Tools

An integrated set of system development and management tools will be provided in all

levels of IDSE. The IDSE design will provide an environment in which any tool,

regardless of the vendor who produces it, can be used to address the area of the system

development process for which it is designed. Furthermore, the design allows for the
development of tools to assist in as yet unautomated areas of the system development

process. As tools for these areas are developed, they can become part of IDSE without
interfering with the execution of existing tools.

In a Level 0 implementation, tools are loosely coupled. Their use is controlled manually in
the sense that the users login to IDSE and request a tool. The user will be presented with a
list of acceptable tools given his or her role and user profile. However, he or she can
circumvent this process because it does not actually load the tool for him or her, it just
records that user x used tool y. The manual enforcement comes when he or she attempts to
check in any work done. If the correct tool was not used, the librarian will not accept his
or her work. Tools that provide for a Level 1 capability will have as part of their
construction a process by which they can be remotely executed.

Tools that support Level 2 integration must be able to generate an ISyCL representation of
models created with that tool. It must also support the attachment of ISyCL constraints to
models. In other words, a text editor must be supplied in which constraints can be written
which will be appended to the ISyCL representation of a model when it is produced. The
tools will not be required to do anything with these constraints other than to append them to
the output file. The Level 3 tools will have the capability of internally accessing the
integration services and displaying partial models provided by the ISyCL projectors that
will exist in a Level 3 IDSE.

An important and noteworthy characteristic is that each IDSE level will provide all the
capabilities of the preceding levels. This means that any system development tool,
regardless of whether it has been developed to exist within an IDSE, can be useful in the
environment even if in a somewhat manual form, as will be common in a Level 0
environment.

5.2 Automated Support for Information Transfer

A minimum level of automated support for information transfer between tools is
provided in Level 0. Such transfers are provided by the Data Conversion/Translation

50



IDSE Concept of Operations

Utilities & Libraries, which provide a means whereby tool vendors can provide more than

just one data type. The first type would be their normal output since the individual methods

that the tools automate address a particular area of the system development process.
However, part of the output is logically input to other areas of the process. Translators or

converters can be written for a tool to convert that part of its output usable as input to

another phase of the development process. Other tools can be modified slightly to accept

this data as input, thus providing a minimum level of integration and information transfer

for the tools. As a rule, this would require very little modification of existing tools.

A site that implements a Level 1 IDSE will have enhanced integration and information
transfer via the integration services concept. The services approach to integration

concentrates on (1) service advertisement (advertisement), (2) service specification
(protocol), and (3) integration services facilitation (contract specification). The integration

services component of the IDSE will consist of the ISM, Network Transaction Manager,

Plan Builder, and Plan Executor. Associated with these components of the integration

services will be libraries of pregenerated plans (hard-coded plans frequently used as
translation plans at the site) and a library of tool information that consists of the information

about the data that tools can either produce or consume. These two libraries will be used

by the ISM utilities to provide the requested integration service i. The ISM will allow the
IDSE to focus on providing for the integration of tools and the information created by those

tools by establishing a client/server relationship between them. Tools that request data
from the Session Manager will do so via the Network Transaction Manager, which will

interpret the integration request and pass it to the Plan Builder. It will be the responsibility

of the Plan Builder to determine if the user's request can be satisfied. Once a valid plan for

the service request has been built or extracted from the library, the plan is passed to the

Plan Executor, which will execute the plan and return the results.

The ultimate success of the ISM and the ISP depends on the definition of the languages

necessary to support the communication between the user and the ISM/ISP and between the

ISM/ISP and the legacy tools that make up the existing hardware and software platform.

Four languages have been identified: (1) the Service Advertisement Language that provides

a high-level abstract description of the services provided by the current software and

hardware configuration, (2) the Service Contract Language that will describe the data

artifacts, hardware requirements, applications, and invocation sequences necessary to fulfill

an advertised service, (3) the Service Protocol Language that will define the input and

output formats used by the an advertised service, and (4) a Query Language to provide not

only a mechanism for formulating requests to the ISM/ISP but a means by which the

51



IDSE Concept of Operations

ISM/ISP can formulate responses as well. With the ISM/ISP concept, the IDSE will offer

the advantage of integration without the corresponding requirement that all tools conform to

the same data format.

The Level 2 IDSE will have an ISyCL Loader & Reader with an object repository to

enhance the integration of tools and data transfer. ISyCL is designed to meet the

definitional and knowledge representation needs across all system design levels. ISyCL

provides an object-centered approach to the description of model elements and provides the

facilities for attaching constraints to the model elements. It is designed to support all

individual types involved in a system design effort, from the area expert to the database

designer. ISyCL is one language, but to address the variety of system development needs,

it is organized in layers. The current design of ISyCL includes four layers: Area Expert
Layer, Analyst Layer, Information Systems Design Layer, and Method Formalization

Layer.

Constraints are added to the model using the area expert layer. These constraints will be
formalized by an analyst using the analyst layer. He or she will submit the model for
release approval. Finally, whoever is given the necessary authority will save the model to
ESD. The Loader will place the design artifacts into the ESD. However, in order for a

second tool to benefit from this, an ISyCL Reader will be provided that will
interpret/translate the neutral description of the ESD into usable and understandable

information by a tool that can interpret an ISyCL representation. This use of ISyCL and

the Loader and Reader will eliminate the need for the tool format translators that were part
of the Level 0 IDSE. However, it will also mean that all the attached Level 2 IDSE tools

must write and read the ISyCL representation of the method they automate.

A Level 3 IDSE will provide the functionality to interpret the meaning of the model

elements through the use of Domain Ontologies, Method Ontologies, and an ISyCL
interpreter and projector. This functionality will be provided by the ISyCL interpreter and

projector that will work with the domain and method ontologies. The ISyCL interpreter

and projector that will work with the domain and method ontologies are knowledge-based

systems that provide a truly integrated information system development environment in
which information developed in one phase of a project can be automatically used to

decrease the design and development time on other phases of the project. Ontologies are

knowledge bases containing information about the concepts and relationships that exist
between the concepts. The IDSE will have two ontology types: domain and method. A

Method Ontology is a meta-level description of the objects, relationships, and constraints
pertaining to a particular method; in other words, "what is" true about a specific method. A

52



IDSE Concept of Operations

Domain Ontology is a meta-level description of the "niverse of discourse relating to a

specific domain. A Method Ontology and the Domain Ontology used together will guide

the information transfer from a model into the Object Repository through the use of the

ISyCL Interpreter. In the reverse direction, the ISyCL Projector, used in conjunction with

a Method Ontology and the Domain Ontology, can generate a partial model for that method,
given the existing information in the Object Repository. With the inclusion of these
knowledge-based systems, the IDSE will provide for automatic model translation, data

consistency across the entire system development process, and the maintaining of
traceability links between data artifacts.

5.3 Management of the System Development Process

Management and control of the system development process will be provided for in IDSE
with an environment for system development which will allow intelligent and automated

coordination and control throughout the system development process. IDSE will use a
framework to capture and employ the system development knowledge at a particular site.
This framework will include not only the life-cycle analysis, design, implementation,
maintenance, and decision-making activities but also functionality that allows method
identification for specific development situations. Functionality will also allow an
individual site to define and specialize its own system development processes and, in the

more advanced levels, provide automatic enforcement of this definition. The SDF

definition in the system framework will provide individual sites with a means of
specializing the system development process to meet their needs and those of individual
projects at that site. The system framework will provide the following.

1. A framework graph: This will indicate the types of questions that can be
answered depending upon the situation and cell of the framework.

2. Definitions associated with each cell in the graph, which will provide:

a. the properties, objects, and user roles that characterize the development

situation associated with each cell, and

b. the context and intercell relations that characterize the cell interpretations.

3. The overall and individual role system development process descriptions.
These will be process models of the IDEF3-type.

4. The identification of the component methods and tools associated with each cell
in the system framework.

53



IDSE Concept of Operations

A framework generator is being designed to assist in the development of site- or project-

specific system development frameworks. It will also help tailor the general development

methods, tools, and procedures to fit the specific enterprise, site, project, and user. It will

request enterprise and user information profiles and, from these, generate the necessary

system description framework for the specific site or project. It will outline the tools and

methods to use, as well as what each user role or involvement should be at each step in the

system development process. However, prior to the development of this utility, the sites

will have to generate the system description framework more or less by hand with the

assistance of various automated tools, such as an IDEF3. Each IDSE site will have a

"Framework Installer" that will allow the installation of the framework into the system.

These components will eventually comprise the framework definition mechanism and,

together with a "Framework Inspector" (a utility for inspecting the various components of

the framework), will make up site framework utilities.

In a Level 0 IDSE implementation, the definition of the framework will be primary manual,

which will likely consist of IDEF3 process models and textual descriptions of the rules to

be followed in the various processes. The enforcement of the system description process

will be almost totally in the hands of the librarian. The installer will likely be simply a

utility that stores this process description in a schema accessible by librarian queries. Level

I will not be much more automated in the definition of the framework, but the enforcement

of the rules and procedures will become more automated. The Framework Generator and

the fully automated execution of the site-defined system development process will be

available in both Level 2 and Level 3 implementations of the IDSE.

5.4 Management of Information System Design Artifacts

Management of information system design artifacts will be provided for first in the

minimum Life-Cycle Artifact Repository and in more advanced levels by an Object

Repository. IDSE requirements could almost be called the requirements for a repository.

It will provide the storage and management utilities necessary for controlling the massive

amounts of information generated in a system development effort as well as the available

tools and system development process models. Associated with these repositories will be

the means for providing object versioning, change control, and configuration management.

Not the least important will be the means for management and control of complex objects.

In the minimum LCAR of a Level 0 implementation, and to some degree in a Level 1

implementation, the repository Artifact Catalog database will store only pointers to the file

54



IDSE Concept of Operations

storage areas, and the Life-Cycle Artifact Manager will be managing these pointers and the

file storage areas. The Artifact Repository Manager will provide the utilities necessary for

controlling and maintaining the environment. Version, configuration, and change control

capabilities in a Level 0 implementation will be provided via special commands available to

the system librarian. Due to the increased networking capability of a Level 1

implementation and the auto-check-in facility, these features will be more robust.

It is not until Levels 2 and 3 that the system will have a true object repository and be

capable of providing for automated version, configuration, and change control. The

Object Repository of these IDSE levels will be defined using an object-oriented data model

since they allow for versioning at the object and global level. This is ideal for tracking data

throughout the modeling and design processes. Site-specific change control policies will

be implemented via control points that will provide the automatic enforcement of design

changes and modifications of interested individuals. In this environment, when a

requirement is modified, the system will be able to immediately notify the user of the other

design objects affected by the change. Furthermore, the object-oriented data model allows

easy inclusion of the "part-of" relationship between complex objects that is so important in

modeling the complex relationships that exist among the data elements in a system design

effort. This means that in Level 2 or 3 implementations, provision can be made for the

management and control of complex objects, in a system development environment, that

will consist of composite, aggregate, and complex object collections. All these object

types involve the "part-of' or "has-parts" relationships that exist between many objects in

the real world.

5.5 IDSE Internal Evolution Capabilities

IDSE internal development, management, and evolution capabilities (the IDSE

administration) will be provided by the IDSE system maintenance tool sets. Throughout

this report, we have discussed various utilities and features associated with IDSE.

Furthermore, we have maintained that any IDSE level can evolve as new tools and methods

are developed. In order to enable this evolution to occur, IDSE will provide these system

maintenance tool sets. In a Level 0 implementation, the administration tool sets will include

utilities that allow new tools and permit the inclusion of new translators and translation

libraries. A Level 1 implementation will provide ISM maintenance tools that allow IDSE

sites to extend the integration services they provide. These utilities will be used to insert

new pregenerated plans into the library of plans and to include new tool information as

vendors modify their tools to either provide or accept outside data. In Level 2, the

55



IDSE Concept of Operations

maintenance tools will include those that allow the addition of new capabilities to the

Loaders and Reader. New tools and methods will be developed, and knowledge of these

must be included in the Loader and Reader. At all levels, the maintenance tools will

provide the facilities for defining new objects in the database(s). The maintenance tools of

the Level 3 environment will be particularly concerned with providing the capability of

including new ontologies (either domain or method). These capabilities provide an IDSE

with the ability to evolve so that the IDSE initially installed, regardless of the level, can

evolve gracefully.

Finally, by providing four levels of IDSE integration technology we provide an information

system development environment that can be installed and used not only by large, wealthy

organizations, but by small and medium-sized organizations as well. It will provide an

environment in which an enterprise can control the information system development

process, and create and maintain more consistent information systems. Furthermore,

regardless of the level, it provides a means whereby an enterprise can decrease the cost

(both in time and money) of developing and maintaining evolving integrated information

systems.

56



IDSE Concept of Operations

Bibliography

[AD/Cycle 90] Proceedings, 3 Rs of Software Automation: Re-
Engineering, Reusability, Repositories. An Extended
Intelligence, Inc. Conference and Tools Exhibition, 25 East
Washington Street, Suite 600, Chicago, IL 60602.

[Coleman 89] Coleman, D. S. "A Framework for Characterizing
the Methods and Tools of an Integrated System Engineering
Methodology (ISEM)," Pacific Information Management,
Draft 2 Rev. 0, May 1989, p. 2.

[CIM-OSA 89] Open System Architecture for CIM, Research
Reports ESPRIT, Project 688, Amice, Volume 1. Springer-
Verlag, New York.

[Decker 92] Decker, L. P., and Mayer, R. J. Information
System Constraint Language (ISyCL) Technical Report. AL-
TP-1992-0019, Armstrong Laboratory, Wright-Patterson Air
Force Base, September, 1992.

[DICE 89] DARPA Initiative in Concurrent Engineering (DICE):
Red Book of Functional Specifications for the DICE
Architecture, February 28, 1989. Contract MDA972-88-C-
0047, Concurrent Engineering Research Center, West Virginia
University.

[EIS 86] The Department of Defense Requirements for
Engineering Information Systems: Volume I - Operational
Concepts; Volume 2 - Requirements. J. L. Linn, and R. I.
Winner (eds.), EIS Requirements Team, The Institute for
Defense Analyses, Alexandria, VA.

[EIS 89] Engineering Information Systems: Volume 1 -
Organization and Concepts; Volume 2 - Specifications and
Guidelines. Honeywell Systems and Research Center,
Minneapolis, MN, October, 1989.

[Goldfine 87] Goldfine, A., and Konig, P. A Technology
Overview of the Information Resource Dictionary System
(Revision 1), Center for Programming Science and
Technology, Institute for Computer Science and Technology,
National Bureau of Standards, April, 1987.

57



IDSE Concept of Operations

[FPP 90] Framework Programmable Platform for Advanced
Software Development Workstation: Concept of Operations
Document, Knowledge Based Systems, Inc., Prepared for
NASA-Johnson Space Center, RICIS Program: Subcontract
Number 077: Cooperative Agreement Number NCC 9-16,
September, 1990.

[IDS 89] Integrated Design Support System (IDS), AFHRL-TR-
89-6: Volume I - Executive Overview; Volume II - IDS
Introduction and Summary; Volume III - IDS Requirements;
Volume IV - IDS Task Results; Volume V - IDS Software
Documentation. Air Force Human Resources Laboratory,
Wright-Patterson Air Force Base, OH, December, 1989.

[IISS 85] Judson, D. L. Integrated Information Support Systems,
1985; Integrated Information Support System (IISS): An
Evolutionary Approach to Integration, Manufacturing
Technology Division, Materials Laboratory, Air Force Wright
Aeronautical Laboratories, 1985.

[ISO-CSA 82] Concepts and Terminology for the Conceptual
Schema and the Information Base, ISO/TC97/SC5/WG3, 1982.

[Mayer 90a] "IDEFo Function Modeling: A Reconstruction of the
Original Air Force Report," Mayer, R. J. (ed.), Knowledge-
Based Systems, Inc., College Station, TX 1990.

[Mayer 90b] "IDEF1 Information Modeling: A Reconstruction of
the Original Air Force Report," Mayer, R. J.(ed.),
Knowledge-Based Systems, Inc., College Station, TX 1990.

[Mayer 90c] "IDEFIx Data Modeling: A Reconstruction of the
Original Air Force Report," Mayer, R. J.(ed.), Knowledge-
Based Systems, Inc., College Station, TX 1990.

[Mayer 90d] A Design Knowledge Management System (DKMS),
SBIR Phase I Final Report, AFHRL-TP-90-81, Air Force
Human Resources Laboratory, Wright-Patterson Air Force
Base, OH, December, 1990.

[Mayer 91a] Mayer, R., Framework Research Report, Final
Technical Report, Integrated Information Systems Evolution
Environment, United States Air Force Armstrong Laboratory,
Wright-Patterson Air Force Base, OH, June, 1991.

58



IDSE Concept of Operations

[Mayer 91b] Mayer, R. J., Painter, M. "IDEF Family of
Methods," Technical Report, Knowledge Based Systems, Inc.,
College Station, TX, January, 1991.

[Mayer 92a] Mayer, R. J., Menzel, C. P, deWitte, P. S., and
Painter, M. K. IDEF3 Technical Report, AL-TP-1992-
XXXX, Armstrong Laboratory, Wright-Patterson Air Force
Base, OH, December, 1992.

[Mayer 92b] Mayer, R. J. , Edwards, D. A., and Painter, M. K.
IDEF4 Technical Report, AL-TP-1992-XXXX, Armstrong
Laboratory, Wright-Patterson Air Force Base, OH, December,
1992.

[Mayer 92c] Mayer, R. J., Griffith, P., Menzel, C. P., Cullinane,
T. P., and Painter, M. K. IDEF6: A Design Rationale Capture
Method Concept Paper, AL-TP-1992-0050, Armstrong
Laboratory, Wright-Patterson Air Force Base, OH,
November, 1992.

[Menzel 90] Menzel, C. P., Mayer, R. J., and Edwards, D.,
IDEF3 Formalization Report, AL-TP-1991-0043, Wright-
Patterson Air Force Base, OH, October, 1991.

[Menzel 91] Menzel, C. P., Mayer, R. J., and Painter, M. K.
IDEF5 Ontology Description Capture Method: Concepts and
Formal Foundations, AL-TP-1992-0051, Armstrong
Laboratory, Wright-Patterson Air Force Base, OH,
November, 1992.

[Painter 91] Painter, M. Information Integration for Concurrent
Engineering (lICE): Program Foundations and Philosophy,
Conference Proceedings for the IDEF Users Group, May,
1991.

[PCTE 89] Brown, A. W. Database Support for Software
Engineering, Wiley & Sons, New York, NY, 1989.

[Ross 77] Ross, D. T. Structured Analysis (SA): A Language for
Communicating Ideas, IEEE Transactions on Software
Engineering, January, 1977.

[SEM 83] System Development Methodology User's Manual,
Hughes Aircraft Company, UM170131000, October, 1983,
Vol 7.

59



IDSE Concept of Operations

[SSE 90] Barnes, F. N. Software Support Environment System
Project Overview, Lockheed Missiles & Space Company,
April, 1990.

[IUG 90] "Working Group 1 (Frameworks) Technical & Test
Committee," IDEF Users Group, The IDEF Enterprise
Framework, Document IDEF-UG-0001, Version 1.0, January
1990.

[Wilson 87] Wilson, M. L. Information Automat: Concept
Definition Facility. IA Systems, Inc., San Jose, CA, 1987.

[Zachman 86] Zachman J. A. A Framework for Information
Systems Architecture, IBM Los Angeles Scientific Center,
G320-2785, March, 1986.

60 U.S. Government Printing Office: 1993 - 750-06V60247


